Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số lường thóc cần tìm là x ( x > 0 )
vì cùng là gạo nên số lượng gạo khi sát và số lượng thóc cần tìm là 2 đại lượng tỉ lệ nghịch
ta có 62/x = 100/120
x = 62*120 / 100 = 74,4
vậy cần 120 kg gạo thì ta sát 74,4 kg thóc
b) Xét tam giác ABF có:
BH là đường cao(AH⊥BH)
BH là phân giác( BC là phân giác \(\widehat{ABF}\))
=> Tam giác ABF cân tại B
=> AB=BF
Mà AB=CE(ΔMBA=ΔMCE)
=> CE=BF
c) Ta có: \(\widehat{ABC}=\widehat{BCE}\left(\Delta MBA=\Delta MCE\right)\)
Mà \(\widehat{ABC}=\widehat{KBC}\)(BC là phân giác \(\widehat{ABF}\))
\(\Rightarrow\widehat{BCE}=\widehat{KBC}\)
=> Tam giác KBC cân tại K
=> KM là đường trung tuyến cũng là đường phân giác \(\widehat{BKC}\left(1\right)\)
Ta có: KB=KC(KBC cân tại K), BF=CD(cmt)
=> KB-BF=KC-CE=> KF=KE
Xét tam giác BEK và tam giác CFK có:
KF=KE(cmt)
\(\widehat{K}\) chung
BK=KB(KBC cân tại K)
=> ΔBEK=ΔCFK(c.g.c)
=> \(\widehat{EBK}=\widehat{KCF}\)
Xét tam giác BFC và tam giác CEB có:
BC chung
\(\widehat{FBC}=\widehat{BCE}\)(cmt)
BF=CE(cmt)
=> ΔBFC=ΔCEB(c.g.c)
=> \(\widehat{BFC}=\widehat{BEC}\)
Xét tam giác BFI và tam giác CEI có:
\(\widehat{BFC}=\widehat{BEC}\left(cmt\right)\)
BF=CE(cmt)
\(\widehat{FBI}=\widehat{ECI}\left(cmt\right)\)
=> ΔBFI=ΔCEI(g.c.g)
=> IF=IC
=> ΔIFK=ΔIEK(c.c.c)
=> KI là phân giác \(\widehat{BKC}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow M,I,K\) thẳng hàng
https://timvanban.vn/dap-an-olympic-brics-math
v đây xem đáp án nhé bạn
Đầu tiên, họ(thằng ra đề) đưa ra giả thuyết và kết luận
vd: Cho tam giác abc, vẽ tia đối blabala....
a) chứng minh tam giác này bằng tam giác kia
Vậy kết luận chính là câu a, còn giả thuyết là phần "cho tam giác...."
Nhưng chẳng có gì nói rằng kết luận đó đúng cả hay nói cách khác là người đọc nhìn thấy nhưng chưa tin
Thử lấy vd cho dễ hiểu: 1 thằng nói cái ghế trước mặt bạn đang dính nước, bạn không tin => nó phải chứng minh lời nói của nó đúng để bạn tin.
Vậy chứng minh là làm sao để người đọc hay thằng chấm bài hiểu rằng kết luận đúng.
Cách chứng minh: Giả thuyết người ta đưa không phải để nhìn cho vui, cả kiến thức môn hình trên trường cũng vậy. Phải biết kết hợp 2 cái lại để có thể chứng minh kết luận đúng.
Quay lại câu hỏi: Cm tam giác cân kiểu gì?
Bạn học lại tính chất tam giác cân rồi dùng nó áp dụng nhé
làm dc thì làm đi hỏi chi cho mệt, mà cái hình DQ và TLN đẹp đấy
cậu không nên vội vàng như vậy