Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Có góc ABH = góc BEH + BHE
Mà BEH = BHE
=> BEH=BHE=C
Có DHC=BHE
=> DHC=C => tam giác DHC cân tại D => DH=DC
Có góc AHD=HAD => DH=DA
b) tự làm nhé, hai tam giác này bằng nhau
c) ADB'H là hình thang --> góc DB'A = B'AH
Có tam giác ABB' cân => BAH=HAB'
=> AHB'= HAB' + HB'A = 3C
Sau đó biến đổi một vài góc nữa là ra.
c) Có tam giác ABB' cân =>góc ABB’= góc AB'B= ^B’AC+ ^ C =2^ C
=> ^B’AC= ^C=> TAM GIÁC AB’C cân tại B’.

Gọi 3 phân số tối giản đó là \(\frac{a}{b};\frac{c}{d};\frac{m}{n}\)
Theo bài ra , ta có :
\(\frac{a}{b}+\frac{c}{d}+\frac{m}{n}=\frac{213}{70}\left(1\right)\)
\(\hept{\begin{cases}\frac{a}{3}=\frac{c}{4}=\frac{m}{5}\\\frac{b}{5}=\frac{d}{1}=\frac{n}{2}\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{a}{3}=\frac{c}{4}=\frac{m}{5}=k\\\frac{b}{5}=\frac{d}{1}=\frac{n}{2}=q\end{cases}}\Rightarrow\hept{\begin{cases}a=3k;c=4k;m=5k\\b=5q;d=q;n=2q\end{cases}}\left(2\right)\)
Thay vào (1) , ta có :
\(\frac{3k}{5q}+\frac{4k}{q}+\frac{5k}{2q}=\frac{213}{70}\)\(\Rightarrow\frac{6k}{10q}+\frac{40k}{10q}+\frac{25k}{10q}=\frac{213}{70}\)
\(\Rightarrow\frac{71k}{10q}=\frac{213}{70}\Rightarrow\frac{71}{10}.\frac{k}{q}=\frac{213}{70}\)\(\Rightarrow\frac{k}{q}=\frac{213}{70}:\frac{71}{10}=\frac{3}{7}\)
\(\Rightarrow\hept{\begin{cases}k=3\\q=7\end{cases}}\), kết hợp (2) \(\Rightarrow\hept{\begin{cases}\frac{a}{b}=\frac{3.3}{7.5}=\frac{9}{35}\\\frac{c}{d}=\frac{4.3}{1.7}=\frac{12}{7}\\\frac{m}{n}=\frac{5.3}{2.7}=\frac{15}{14}\end{cases}}\left(\text{Đều là các phân số tối giản}\right)\left(\text{Thỏa mãn}\right)\left(3\right)\)
Thử lại : \(\frac{a}{b}+\frac{a}{d}+\frac{m}{n}=\frac{9}{35}+\frac{12}{7}+\frac{15}{14}=\frac{213}{70}\left(\text{thỏa mãn}\right)\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\hept{\begin{cases}\frac{a}{b}=\frac{9}{35}\\\frac{c}{d}=\frac{12}{7}\\\frac{m}{n}=\frac{15}{14}\end{cases}}\left(\text{Thỏa mãn với mọi điều kiện đề bài}\right)\)
Vật \(\hept{\begin{cases}\frac{a}{b}=\frac{9}{35}\\\frac{c}{d}=\frac{12}{7}\\\frac{m}{n}=\frac{15}{14}\end{cases}}\)
Câu 4 thì mình sửa rồi còn các câu còn lại là bạn chưa khai thác kĩ đề nhé!!!