Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(2x2-2x+2)+1
=(x-y)2+2(x-1)2+1
vì (x-y)2 ≥0 ∀x,y
(x-1)2 ≥ 0 ∀x
=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y
=> A ≥1
= > GTNN A = 1 khi
x-1=0
=> x=1
x-y=0
=> 1-y=0
=> y=1
vậy GTNN A =1 khi x=y=1
A=x2-xy +y2-2x -2y suy ra 2. A = 2 x2-2xy +2y2-4x -4y = (x2-2xy +y2 ) + (x2-4x + 4) +( y2-4y+ 4) -8
2A = (x -y)2 + (x -2)2 + (y -2)2 -8 \(\ge\)-8 nên A \(\ge\)-4
dấu "=" xảy ra khi và chỉ khi x -y =0; x -2 =0 và y -2 = 0 suy ra x =y =2
Vậy GTNN của A là -4 tại x =y = 2
4A = 4x^2-4xy+4y^4-8x-8y
= [ (4x^2-4xy+y^2)-2.(2x-y).2+4 ] + (3y^2-4y+4/3) - 16/3
= (2x-y-2)^2 + 3.(y-2/3)^2 - 16/3 >= -16/3 => A >= -4/3
Dấu "=" xảy ra <=> 2x-y-2=0 và y-2/3 = 0
<=> x=4/3 và y=2/3
Vậy Min của A = -4/3 <=> x = 4/3 và y = 2/3
k mk nha
\(N=x^2+y^2+xy+x+y\)
\(\Rightarrow N=\left(x^2+xy+y^2\right)+\left(x+y\right)\)
\(\Rightarrow N=\left(x+y\right)^2+\left(x+y\right)\)
\(\Rightarrow N=\left(x+y\right)\left(x+y+1\right)\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(A=x^2+y^2-xy+2x-2y+2022\)
\(A=\left(x^2+\dfrac{y^2}{4}+1-xy+2x-y\right)+\dfrac{3}{4}y^2-y+2021\)
\(A=\left(x-\dfrac{y}{2}+1\right)^2+\dfrac{3}{4}\left(y-\dfrac{2}{3}\right)^2+\dfrac{6062}{3}\ge\dfrac{6062}{3}\)
\(A_{min}=\dfrac{6062}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{3};\dfrac{2}{3}\right)\)
???