\(\left|2x-2\right|\)+\(\left|2x-2019\right|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

Ta gọi biểu thức đó là A , ta có :

\(A=\left|2x-2\right|+\left|2x-2019\right|=\left|2x-2\right|+\left|2019-2x\right|\)

Lại có :

\(\left|2x-2\right|+\left|2019-2x\right|\ge2x-2+2019-2x=2017\)

=) MinA = 2017

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}2x-2\ge0\\2019-2x\ge0\end{matrix}\right.\)\(\Leftrightarrow2< 2x< 2019\Leftrightarrow1< x< \dfrac{2019}{2}\)

Vậy GTNN của A là 2017 khi và chỉ khi \(1< x< \dfrac{2019}{2}\)

Chúc bạn học tốt =))ok

10 tháng 3 2017

Ta có:|2x-2019|=|2019-2x|

Áp dụng tính chất |a|+|b|\(\ge\)|a+b| ta được

|2x-2|+|2x-2019|\(\ge\)|2x-2+2019-2x|=|2017|=2017

Vậy GTNN của |2x-2|+|2x-2019|=2017

25 tháng 8 2020

F = | 2x - 2 | + | 2x - 2003 |

F = | 2x - 2 | + | -( 2x - 2003 ) |

F = | 2x - 2 | + | 2003 - 2x |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001

Đẳng thức xảy ra khi ab ≥ 0

=> ( 2x - 2 )( 2003 - 2x ) ≥ 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)

2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )

Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)

G = | 2x - 3 | + 1/2| 4x - 1 |

G = | 2x - 3 | + | 2x - 1/2 |

G = | -( 2x - 3 ) | + | 2x - 1/2 |

G = | 3 - 2x | + | 2x - 1/2 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2

Đẳng thức xảy ra khi ab ≥ 0 

=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0

Xét 2 trường hợp :

1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)

2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )

=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)

H = | x - 2018 | + | x - 2019 | + | x - 2020 | 

H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]

H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]

H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]

Ta có : | x - 2019 | ≥ 0 ∀ x

| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )

=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2

Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)

=> x = 2019

=> MinH = 2 <=> x = 2019

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

$H=|x-2018|+|x-2019|+|x-2020|$

$=|x-2018|+|x-2020|+|x-2019|=|x-2018|+|2020-x|+|x-2019|$

Ta có:

$|x-2018|+|2020-x|\geq |x-2018+2020-x|=2$

$|x-2019|\geq 0$ với mọi $x$

$\Rightarrow H\geq 2$

Vậy $H_{\min}=2$. Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-2018)(2020-x)\geq 0\\ x-2019=0\end{matrix}\right.\Leftrightarrow x=2019\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

Bạn áp dụng BĐT sau:

$|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Ta có:

\(F=|2x-2|+|2x-2003|=|2x-2|+|2003-2x|\geq |2x-2+2003-2x|=2001\)

Vậy $F_{\min}=2001$. Dấu "=" xảy ra khi $(2x-2)(2003-2x)\geq 0$

$\Leftrightarrow 1\leq x\leq \frac{2003}{2}$

---------------

\(G=|2x-3|+\frac{1}{2}|4x-1|=|2x-3|+|2x-\frac{1}{2}|=|3-2x|+|2x-\frac{1}{2}|\geq |3-2x+2x-\frac{1}{2}|\)

\(=\frac{5}{2}\)

Vậy $G_{\min}=\frac{5}{2}$. Dấu "=" xảy ra khi $(3-2x)(2x-\frac{1}{2})\geq 0$

$\Leftrightarrow \frac{1}{4}\leq x\leq \frac{3}{2}$

5 tháng 3 2019

a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra

<=>x=2

b) Min A =2019<=>Dấu ''='' xảy ra

<=>2x-5=0

<=>x=5/2

5 tháng 3 2019

nnznznxk

1 tháng 1 2019

a) \(A=\left|x-1\right|+2018\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

1 tháng 1 2019

\(Tacó:\)

\(|x-1|\ge0\Rightarrow|x-1|+2018\left(\cdot\right)\ge2018\)

\(\Rightarrow GTNNcua\left(\cdot\right)=2018\)

Dấu "=" xảy ra khi: x=1

Vậy (*) Đạt GTNN là: 2018 khi: x=1

a: \(A=\left|x-3\right|+\left|7-x\right|\ge\left|x-3+7-x\right|=4\)

Dấu '=' xảy ra khi x-3>0 và 7-x>0

=>3<x<7

c: \(C=x^2-3x+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}>=\dfrac{19}{4}\)

Dấu '=' xảy ra khi x=3/2

19 tháng 8 2017

a) \(A=\left|x+2\right|+\left|x-3\right|\)

\(\Leftrightarrow A=\left|x+2\right|+\left|3-x\right|\)

Ta có: \(\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|\)

\(\Rightarrow\left|x+2\right|+\left|3-x\right|\ge5\)

\(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\le0\)

\(x+2>x-3\)

\(\Rightarrow\left\{{}\begin{matrix}x+2\ge0\\x-3\le0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-2\\x\le3\end{matrix}\right.\)

Vậy \(Min_A=5\) đạt được \(\Leftrightarrow-2\le x\le3\)

19 tháng 8 2017

Phần b) tương tự