Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\left|x-1\right|+\left|x+3\right|+\left|x-3\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) đấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :
\(T=\left|x-1\right|+\left|x+3\right|+\left|3-x\right|\ge\left|x-1\right|+\left|x+3+3-x\right|=\left|x-1\right|+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left(x+3\right)\left(3-x\right)\ge0\end{cases}\Rightarrow x=1\left(TM\right)}\)
Vật \(T_{min}=6\) tại x = 1
Giao luu: Vi_et, tam giác đều
điều kiện có nghiệm m>=0
\(\orbr{\begin{cases}x_1+x_2=2\left(1\right)\\x_1x_2=1-m\left(2\right)\end{cases}}\)gọi a,b dễ viết \(P=!3a+b!+!3b+a!\)
\(P=!2a+2!+!2b+2!=2\left(!a+1!+!b+1!\right)\)
g/s b>=a => !b+1!=b+1 vì khi đó b>0
giờ lại phải xem a với -1 khi nào
f(-1)=4+m vậy với m=4 xẽ có nghiệm a=-1=>
TH xét 0<m<=4
\(P=2\left[\left(a+1\right)+b+1\right]=2.4=8\)
TH m>4
\(P=2\left[\left(b+1\right)-\left(a+1\right)\right]=2\left(b-a\right)\)có vẻ phức tạp tơn
(a+b)^2=4=> (b-a)^2=4-4ab=4-4(1-m)=m
Vì b>=a=> \(b-a=2\sqrt{m}\)
\(P=4.\sqrt{m}\)
có vẻ mệt hơn cách thông thường
Mình làm BT
\(\left(x-1\right)^2=m\Rightarrow m\ge0\Rightarrow\orbr{\begin{cases}x_1=1-\sqrt{m}\\x_2=1+\sqrt{m}\end{cases}}\)\(P=2.\left[!\left(2-\sqrt{m}\right)!+!\left(2+\sqrt{m}\right)!\right]\)
Nếu \(2-\sqrt{m}\ge0\Rightarrow0\le m\le4\)\(\Rightarrow P=2\left(2+2\right)=8\)
nếu\(2-\sqrt{m}< 0\Rightarrow m>4\) \(P=2\left(-2+\sqrt{m}+2+\sqrt{m}\right)=4\sqrt{m}\)
có lẽ mình áp dụng Vi_et chưa hay!
Cách em áp dụng viet đúng ,phức tạp hơn đúng. Nó phát huy tác dụng với bài phức tạp hơn. Vdụ rẽ hiểu. Nhà bạn cách nhà 50m ? Đi bộ hay đi xe đạp ai đến trước.
\(\left|2x+1\right|+\left|2x-1\right|=4\) (1)
Lập bảng xét dấu, ta được:
-Nếu \(x< \frac{-1}{2}\) thì (1) trở thành: \(-\left(2x+1\right)-\left(2x-1\right)=4\)
\(\Leftrightarrow-2x-1-2x+1=4\Leftrightarrow-4x=4\Leftrightarrow x=-1\) (nhận)
-Nếu \(\frac{-1}{2}\le x< \frac{1}{2}\) thì (1) trở thành: \(2x+1-\left(2x-1\right)=4\)
\(\Leftrightarrow2x+1-2x+1=4\Leftrightarrow4x=2\Leftrightarrow x=\frac{1}{2}\) (loại)
-Nếu \(x\ge\frac{1}{2}\) thì (1) trở thành: \(2x+1+2x-1=4\Leftrightarrow4x=4\Leftrightarrow x=1\) (nhận)
Vậy x = 1 hoặc x = -1
a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:
Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))
Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)
b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5
Vậy, khi x = 4/9, giá trị của A là 6/5.
c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3
Vì A là một số âm, ta có: -√x/(x - 1) = -1/3
Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0
Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2
Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.
|x - 2|+ |x - 3| = 4
Th1: x - 2 + x - 3 = 4
-5 = 4 (vô lí)
Th2: -(x - 2) + [-(x-3)] = 4
-x + 2 + (-x) + 3 =4
-2x + 5 = 4
-2x = -1
x = 1/2
Vậy x = 1/2
a: \(\text{Δ}=\left[-\left(m+3\right)\right]^2-4\cdot2\cdot m\)
\(=\left(m+3\right)^2-8m\)
\(=m^2-2m+9=\left(m-1\right)^2+8>0\forall m\)
=>Phương trình (1) luôn có hai nghiệm phân biệt
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{m+3}{2}\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m}{2}\end{matrix}\right.\)
\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\dfrac{1}{4}\left(m+3\right)^2-4\cdot\dfrac{m}{2}}\)
\(=\sqrt{\dfrac{1}{4}\left(m^2+6m+9\right)-2m}\)
\(=\sqrt{\dfrac{1}{4}m^2+\dfrac{3}{2}m+\dfrac{9}{4}-2m}\)
\(=\sqrt{\dfrac{1}{4}m^2-\dfrac{1}{2}m+\dfrac{9}{4}}\)
\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+9\right)}\)
\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+1+8\right)}\)
\(=\sqrt{\dfrac{1}{4}\left(m-1\right)^2+2}>=\sqrt{2}\)
Dấu '=' xảy ra khi m-1=0
=>m=1
\(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)