![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình nhầm
a)Ta có: (a+b)2=a2+2ab+b2=a2-2ab+4ab+b2=(a2-2ab+b2)+4ab=(a-b)2+4ab
=>(a+b)2=(a-b)2+4ab(1)
b)Ta có: (a-b)2=a2-2ab+b2=a2+2ab-4ab+b2=(a2+2ab+b2)-4ab=(a+b)2-4ab
=>(a-b)2=(a+b)2-4ab(2)
Áp dụng (1) và (2) ta có:
(a-b)2=(a-b)2-4ab=72-4.12=49-48=1
(a+b)2=(a-b)2+4ab=202+4.3=400+12=412
Vậy (a-b)2=1
(a+b)2=412
1)
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
ta có \(\left(a+b\right)^2=a^2+2ab+b^2\left(1\right)\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\left(2\right)\)
so sánh ta thấy 1 = 2
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
cái thứ 2 tương tự
2) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)= 72-4*12=1
(a+b)2=(a-b)2+4ab = 202+4*3=412
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow a^3-b^3=\left(a-b\right)[\left(a-b\right)^2+3ab]\)
Thay \(a-b=4\)và \(a.b=-21\)vào ta được:
\(a^3-b^3=4.\left[4^2+3.\left(-21\right)\right]\)
\(\Leftrightarrow a^3-b^3=-188\)
_Minh ngụy_
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
a2 + b2=(a+b)2-2ab=S2-2P
a3+b3=(a+b)3-3ab(a+b)=S3-3.S.P
a4+b4=(a2+b2)2-2a2b2=(S2-2P)2-2S2
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
![](https://rs.olm.vn/images/avt/0.png?1311)