Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTNN là tắt của giá trị nhỏ nhất,
Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\) (số a là số biết trước)
VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\) hay \(minP=\dfrac{1}{3}\)
Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,
VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra
<=> x = b (x là ẩn và b là biết trước)
Ở một số bài có thể cho điều kiện của ẩn.
Áp dụng BĐT cosi, ta có
\(\sqrt{3a+1}=\dfrac{1}{2}\sqrt{4\left(3a+1\right)}\le\dfrac{1}{2}.\dfrac{4+3a+1}{2}=\dfrac{3a+5}{4}\)
CMTT, ta có \(\sqrt{3b+1}\le\dfrac{3b+5}{4};\sqrt{3c+1}\le\dfrac{3c+5}{4}\)
Từ đó suy ra \(K\le\dfrac{3\left(a+b+c\right)+15}{4}=6\)
Dấu "=" xảy ra khi a=b=c=1
Vậy...
ta có BĐT \(\sqrt{3a+1}\ge\dfrac{a\left(\sqrt{10}-1\right)}{3}+1\)
\(\Leftrightarrow a\left(3-a\right)\ge0đúng\forall a\)
CMRTT, ta có
\(\sqrt{3b+1}\ge\dfrac{b\left(\sqrt{10}-1\right)}{3}+1\)
\(\sqrt{3c+1}\ge\dfrac{c\left(\sqrt{10}-1\right)}{3}+1\)
Do đó \(K\ge\dfrac{\left(a+b+c\right)\left(\sqrt{10}-1\right)}{3}+3=\sqrt{10}+2\)
Dấu "=" xảy ra khi a=3, b=c=0
Vậy...
\(P=1\sqrt{a-1}+1\sqrt{b-2}+1\sqrt{c-3}\le\dfrac{1}{2}\left(1+a-1+1+b-2+1+c-3\right)=3\)
\(P_{max}=3\) khi \(\left(a;b;c\right)=\left(2;3;4\right)\)
\(P^2=a+b+c-6+2\left(\sqrt{\left(a-1\right)\left(b-2\right)}+\sqrt{\left(a-1\right)\left(c-3\right)}+\sqrt{\left(b-2\right)\left(c-3\right)}\right)\)
\(P^2\ge a+b+c-6=3\)
\(P\ge\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(\left(a;b;c\right)=\left(1;2;6\right);\left(1;5;3\right);\left(4;2;3\right)\)
thầy giải thích thêm phần dấu bằng xảy ra của phần tìm giá trị nhỏ nhất được không ạ
Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)
Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).
Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).
Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).
Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0
Tham khảo:
https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29
\(\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\) \(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{\frac{8\left(a+b\right)}{2}}=\frac{1}{2}\)
dau = xay ra khi a=b
\(3a+15.\sqrt{a}+3\ge3.0+15.0+3\)
=> GTNN biểu thức = 3 khi a = 0