Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ab+3b^2}\)
\(=\sqrt{2\left(a+b\right)^2+\left(a-b\right)^2}+\sqrt{2\left(b+c\right)^2+\left(b-c\right)^2}+\sqrt{2\left(c+a\right)^2+\left(c-a\right)^2}\)
\(\ge2\sqrt{2}\left(a+b+c\right)\ge\sqrt{2}\left(2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3\right)=6\sqrt{2}\)
Vậy GTNN của P là \(6\sqrt{2}\Leftrightarrow a=b=c=1\)
\(\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\) \(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{\frac{8\left(a+b\right)}{2}}=\frac{1}{2}\)
dau = xay ra khi a=b
Lời giải:
Đặt \(\sqrt[3]{4-\sqrt{15}}=m\)
Khi đó \(a=\frac{1}{m}+m\Rightarrow a^3-3a=\frac{1}{m^3}+\frac{3}{m}+3m+m^3-3(\frac{1}{m}+m)\)
\(=\frac{1}{m^3}+m^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}=4+\sqrt{15}+4-\sqrt{15}=8(*)\)
Đặt \(\sqrt[3]{\frac{25+\sqrt{621}}{2}}=n; \sqrt[3]{\frac{25-\sqrt{621}}{2}}=p\)
\(\Rightarrow n^3+p^3=25; np=\sqrt[3]{\frac{25^2-621}{4}}=1\)
\(\Rightarrow (n+p)^3=n^3+p^3+3np(n+p)=25+3(n+p)\)
Do đó:
\(b^3-b^2=\frac{1}{27}(1-n-p)^3-\frac{1}{9}(1-n-p)^2\)
\(=\frac{1}{27}[1-3(n+p)+3(n+p)^2-(n+p)^3]-\frac{1}{9}[1-2(n+p)+(n+p)^2]\)
\(=\frac{-2}{27}+\frac{n+p}{9}-\frac{(n+p)^3}{27}\)
\(=\frac{-2}{27}+\frac{n+p}{9}-\frac{25+3(n+p)}{27}=-1(**)\)
Từ \((*);(**)\Rightarrow a^3+b^3-b^2-3a+100=8+(-1)+100=107\)
\(\sqrt{a^2+3a+5}\ge\frac{5a+13}{6}\Leftrightarrow a^2+3a+5\ge\frac{25a^2+130a+169}{36}\)
\(\Leftrightarrow36a^2+108a+180\ge25a^2+130a+169\Leftrightarrow11a^2-22a+11\ge0\)
\(\Leftrightarrow11\left(a-1\right)^2\ge0\forall a\inℝ\)
Dấu = xảy ra khi a=1
Ta có:
\(\sqrt{a^2+3ab+5b^2}=\sqrt{\left(\frac{25a^2}{36}+\frac{130ab}{36}+\frac{169}{36}\right)+\frac{11}{36}\left(a^2-2ab+b^2\right)}\)
\(=\sqrt{\left(\frac{5a}{6}+\frac{13b}{6}\right)^2+\frac{11}{36}\left(a-b\right)^2}\ge\frac{5a+13b}{6}\)
Tương tự:\(\sqrt{b^2+3bc+5c^2}\ge\frac{5b+13c}{6};\sqrt{c^2+3ca+5a^2}\ge\frac{5c+13a}{6}\)
Khi đó:\(P=\sqrt{a^2+3ab+5b^2}+\sqrt{b^2+3bc+5c^2}+\sqrt{c^2+3ac+5a^2}\)
\(\ge\frac{5a+13b+5b+13c+5c+13a}{6}=\frac{18\left(a+b+c\right)}{6}=3\left(a+b+c\right)=9\)
Dấu "=" xảy ra tại \(a=b=c=1\)
2 ) Ta có : \(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Do a ; b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\frac{a+b}{3}-1\le0\)
\(\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+\frac{8}{a}+\frac{2}{b}+2b-\left(a+b\right)\ge8+4-3=9\)
( áp dụng BĐT Cauchy cho a ; b dương )
Dấu " = " xảy ra \(\Leftrightarrow a=2;b=1\)
Tìm min cho K, tìm max có lẽ Bunhia là ra thôi:
Đặt \(\left\{{}\begin{matrix}\sqrt{3a+1}=x\\\sqrt{3b+1}=y\\\sqrt{3x+1}=z\end{matrix}\right.\) \(\Rightarrow1\le x;y;z\le\sqrt{10}\)
\(x^2+y^2+z^2=3\left(a+b+c\right)+3=12\)
Bài toán trở thành cho \(x^2+y^2+z^2=12\), tìm min \(P=x+y+z\)
Ta có: \(\left(x-1\right)\left(x-\sqrt{10}\right)\le0\Rightarrow x^2-\left(\sqrt{10}+1\right)x+\sqrt{10}\le0\)
\(\left(y-1\right)\left(y-\sqrt{10}\right)=y^2-\left(\sqrt{10}+1\right)y+\sqrt{10}\le0\)
\(\left(z-1\right)\left(z-\sqrt{10}\right)=z^2-\left(\sqrt{10}+1\right)z+\sqrt{10}\le0\)
Cộng vế với vế:
\(x^2+y^2+z^2-\left(\sqrt{10}+1\right)\left(x+y+z\right)+3\sqrt{10}\le0\)
\(\Rightarrow x+y+z\ge\frac{x^2+y^2+z^2+3\sqrt{10}}{\sqrt{10}+1}=\frac{12+3\sqrt{10}}{\sqrt{10}+1}=2+\sqrt{10}\)
\(\Rightarrow P_{min}=2+\sqrt{10}\) khi \(\left(x;y;z\right)=\left(1;1;\sqrt{10}\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(3;0;0\right)\) và các hoán vị
\(3a+15.\sqrt{a}+3\ge3.0+15.0+3\)
=> GTNN biểu thức = 3 khi a = 0