Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 3( x2 + 2x + 1) - 4
= 3(x + 1)2 - 4 \(\ge\) -4
Vậy Min B = -4 khi x + 1 = 0 => x = -1
Chỉ tìm được min thôi nhé bạn!\(A=x^2-8x+4=x^2-8x+16-12=\left(x-4\right)^2-12\ge-12\)
Đẳng thức xảy ra khi x = 4
Vậy Min A là -12 khi x = 4
\(B=2\left(x^2+\frac{3}{2}x-\frac{1}{2}\right)=2\left(x^2+2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}-\frac{1}{2}\right)\)
\(=2\left(x+\frac{3}{4}\right)^2-\frac{17}{8}\ge-\frac{17}{8}\)
Đẳng thức xảy ra khi x = -3/4
Vậy....
\(C=3\left(x^2+2x+\frac{2}{3}\right)=3\left(x^2+2x+1-\frac{1}{3}\right)\)
\(=3\left(x+1\right)^2-1\ge-1\)
Đẳng thức xảy ra khi x = -1
Vậy Min C là -1 khi x = -1
P/s: Câu c min đẹp thật:) x và C trùng nhau:D Mong là ko có tính toán sai:)
A = -(x2+6x-11)
=-(x2+6x+9-20)
=-(x+3)2 + 20 \(\le20\)
vậy min A = 20
dấu = xảy ra khi x = -3
câu B bạn xem có nhầm đề hay thiếu gì k thì bổ sung nhé
a) \(x^2-4x+1=x^2-2.x.2+2^2-3=\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0\)
nên \(\left(x-2\right)^2-3\ge-3\)
Vậy \(Min_{x^2-4x+1}=-3\)khi \(x-2=0\Rightarrow x=2\)
b) \(3x^2-6x-1=3\left(x^2-2x-\frac{1}{3}\right)=3\left(x^2-2.x.1+1-\frac{4}{3}\right)=3\left(x-1\right)^2-4\)
Vì \(\left(x-1\right)^2\ge0\)
nên \(3\left(x-1\right)^2-4\ge-4\)
Vậy \(Min_{3x^2-6x-1}=-4\)khi \(x-1=0\Rightarrow x=1\)
a,\(x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3.\)
Vì \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2-3\ge-3\) Dấu = khi x=3
\(=>Min_A=-3\) khi x=3
b, \(3x^2-6x-1=3\left(x^2-2x-\frac{1}{3}\right)=3\left(x^2-2x+1-\frac{4}{3}\right)\)
\(=3\left[\left(x-1\right)^2-\frac{4}{3}\right]=3\left(x-1\right)^2-4\)
Vì \(\left(x-1\right)^2\ge0=>3\left(x-1\right)^2\ge0=>3\left(x-1\right)^2-4\ge-4\) khi x=1
\(=>Min_A=4\)khi x=1
Bài làm:
Ta có: \(C=3x^2-6x-1\)
\(C=3\left(x^2-2x-\frac{1}{3}\right)\)
\(C=3\left(x^2-2x+1\right)-4\)
\(C=3\left(x-1\right)^2-4\ge-4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(3\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_C=-4\Leftrightarrow x=1\)
C = 3x2 - 6x - 1
= 3( x2 - 2x + 1 ) - 4
= 3( x - 1 )2 - 4
\(3\left(x-1\right)^2\ge0x\Rightarrow\forall3\left(x-1\right)^2-4\ge-4\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinC = -4 <=> x = 1
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
3x2 - 6x - 1
= 3( x2 - 2x + 1 ) - 4
= 3( x - 1 )2 - 4
\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-4\ge-4\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
Vậy GTNN của biểu thức = -4 khi x = 1
\(3x^2-6x-1=3.\left(x^2-2x+1\right)-4=3\left(x-1\right)^2-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)