Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\dfrac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Để T lớn nhất thì \(2020+\left|x-2018\right|\) nhỏ nhất
Mà \(2020+\left|x-2018\right|\ge2020;\forall x\)
--> \(Min=2020\) khi \(x=2018\)
Khi đó \(T=\dfrac{-2\left|2018-2018\right|-2021}{2020+\left|0\right|}=\dfrac{-2.0-2021}{2020}=-\dfrac{2021}{2020}\)
--> \(Max_T=-\dfrac{2021}{2020}\) khi \(x=2018\)
P/s: hongg bt đúng hem nha:v
$T=\frac{-2|x-2018|-2021}{2020+|x-2018|}=\frac{-2(|x-2018|+2020)+2019}{2020+|x-2018|}=-2+\frac{2019}{2020+|x-2018|}$
Lại có $|x-2018| \ge 0$ nên
$T=-2+\frac{2019}{2020+|x-2018|} \le -2+\frac{2019}{2020}=-\frac{2021}{2020}$
Vậy $GTLN=-\frac{2021}{2020}$
Dấu $"="$ xảy ra khi và chỉ khi: $|x-2018|=0\Leftrightarrow x=2018$
\(a,F=\dfrac{x^2+x+4x^2+2-x^2+3x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x}{x-1}\\ b,\left|x+2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1-2=-1\left(ktm\right)\\x=-1-2=-3\end{matrix}\right.\Leftrightarrow x=-3\\ \Leftrightarrow F=\dfrac{-12}{-4}=3\\ c,K=F\left(x-1\right)-x^2-2021=4x-x^2-2021\\ K=-\left(x^2-4x+4\right)-2017=-\left(x-2\right)^2-2017\le-2017\\ K_{max}=-2017\Leftrightarrow x=2\left(tm\right)\)
A = x2 - 3x - 5 = ( x2 - 3x + 9/4 ) - 29/4 = ( x - 3/2 )2 - 29/4 ≥ -29/4 ∀ x
Dấu "=" xảy ra khi x = 3/2
=> MinA = -29/4 <=> x = 3/2
B = 5x - x2 - 2021 = -( x2 - 5x + 25/4 ) - 8059/4 = -( x - 5/2 )2 - 8059/4 ≤ -8059/4 ∀ x
Dấu "=" xảy ra khi x = 5/2
=> MaxB = -8059/4 <=> x = 5/2
C = 4x2 - 4x - 11 = ( 4x2 - 4x + 1 ) - 12 = ( 2x - 1 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = 1/2
=> MinC = -12 <=> x = 1/2
D = 3x - x2 - 15 = -( x2 - 3x + 9/4 ) - 51/4 = -( x - 3/2 )2 - 51/4 ≤ -51/4 ∀ x
Dấu "=" xảy ra khi x = 3/2
=> MaxD = -51/4 <=> x = 3/2
Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).
Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).
Thay vào đẳng thức cần cm ta có đpcm.
Bài làm:
+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)
Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)
+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)
\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)
Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)
+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)
\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Học tốt!!!!
ĐKXĐ : x ≠ -2021
( bài này xét x > 0 nhé, x ≤ 0 thì tìm không ra đâu )
Áp dụng bất đẳng thức AM-GM ta có :
\(x+2021\ge2\sqrt{2021x}\)
=> \(\left(x+2021\right)^2\ge8084x\)
=> \(\frac{1}{\left(x+2021\right)^2}\le\frac{1}{8084x}\)
=> \(\frac{x}{\left(x+2021\right)^2}\le\frac{1}{8084}\)
Đẳng thức xảy ra <=> x = 2021
Vậy GTLN của biểu thức = 1/8084, đạt được khi x = 2021
** Bài này đúng với mọi số \(x\in\left\{x|x\inℝ,x\ne-2021\right\}\)chứ không riêng gì x > 0.
Ta có: \(\frac{x}{\left(x+2021\right)^2}=\left(\frac{x}{\left(x+2021\right)^2}-\frac{1}{8084}\right)+\frac{1}{8084}=\frac{-\left(x-2021\right)^2}{8084\left(x+2021\right)^2}+\frac{1}{8084}\le\frac{1}{8084}\)
Đẳng thức xảy ra khi x = 2021