\(\sqrt{x-1}-\sqrt{x-8}\)

GTNN của B=\(\sqrt{x-3}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 6 2019

Lời giải:

a) ĐKXĐ: \(x\geq 8\)

\(A=\sqrt{x+1}-\sqrt{x-8}=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\). Mà:

\(\sqrt{x+1}+\sqrt{x-8}=\sqrt{(\sqrt{x+1}+\sqrt{x-8})^2}=\sqrt{2x-7+2\sqrt{(x+1)(x-8)}}\)

\(\geq \sqrt{2.8-7+2.0}=3\) với mọi $x\geq 8$

Do đó: \(A=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\leq \frac{9}{3}=3\)

Vậy \(A_{\max}=3\Leftrightarrow x=8\)

b) ĐKXĐ: \(3\leq x\leq 5\)

\(B=\sqrt{x-3}+\sqrt{5-x}=\sqrt{(\sqrt{x-3}+\sqrt{5-x})^2}=\sqrt{2+2\sqrt{(x-3)(5-x)}}\)

\(\geq \sqrt{2+2.0}=\sqrt{2}, \forall 3\leq x\leq 5\)

Vậy \(B_{\min}=\sqrt{2}\Leftrightarrow 3\leq x\leq 5\)

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

22 tháng 2 2017

\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)

\(A\le2\sqrt{5}..\)

22 tháng 2 2017

Bài a, c tìm GTLN thì làm được rồi, chỉ không biết tìm GTNN bằng BĐT như thế nào?
 

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

Lời giải:

Đặt \(\sqrt{x}=a(a\ge 0)\)

Khi đó: \(P=\frac{4a}{3(a^2-a+1)}\)

Để \(P=\frac{8}{9}\Rightarrow \frac{4a}{3(a^2-a+1)}=\frac{8}{9}\)

\(\Rightarrow \frac{a}{a^2-a+1}=\frac{2}{3}\Rightarrow 3a=2(a^2-a+1)\)

\(\Leftrightarrow 2a^2-5a+2=0\Leftrightarrow (a-2)(2a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a-2=0\\ 2a-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=2=\sqrt{x}\\ a=\frac{1}{2}=\sqrt{x}\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} x=4\\ x=\frac{1}{4}\end{matrix}\right.\) (t/m)

b)

\(a\geq 0; a^2-a+1=(a-\frac{1}{2})^2+\frac{3}{4}>0\)

Do đó: \(P=\frac{4}{3}.\frac{a}{a^2-a+1}\geq \frac{4}{3}.0=0\)

Vậy \(P_{\min}=0\Leftrightarrow a=0\Leftrightarrow x=0\)

-------

Áp dụng BĐT Cô-si: \(a^2+1\geq 2a\Rightarrow a^2-a+1\geq 2a-a=a\)

\(\Rightarrow \frac{a}{a^2-a+1}\leq \frac{a}{a}=1\Rightarrow P=\frac{4}{3}.\frac{a}{a^2-a+1}\leq \frac{4}{3}.1=\frac{4}{3}\)

Vậy \(P_{\max}=\frac{4}{3}\Leftrightarrow a=1\Leftrightarrow x=1\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

Bài 2:

Đặt \(P=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{12-4\sqrt{5}}\)

Có:

\(4+\sqrt{15}=\frac{8+2\sqrt{15}}{2}=\frac{5+3+2\sqrt{3.5}}{2}=\frac{(\sqrt{3}+\sqrt{5})^2}{2}\)

\(\Rightarrow \sqrt{4+\sqrt{15}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}}\)

Tương tự: \(\sqrt{4-\sqrt{15}}=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

\(12-4\sqrt{5}=12-2\sqrt{20}=10+2-2\sqrt{10.2}=(\sqrt{10}-\sqrt{2})^2\)

\(\Rightarrow \sqrt{12-4\sqrt{5}}=\sqrt{10}-\sqrt{2}\)

Vậy \(P=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-(\sqrt{10}-\sqrt{2})\)

\(=\sqrt{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 7 2020

Lời giải:

ĐK để tồn tại các biểu thức là $x\geq 0$

a) Ta thấy: $\sqrt{x}\geq 0\Rightarrow \sqrt{x}+5\geq 5$

$\Rightarrow A=\frac{2}{\sqrt{x}+5}\leq \frac{2}{5}$

Vậy $A_{\max}=\frac{2}{5}$ khi $x=0$

b) $\sqrt{x}+7\geq 7$

$\Rightarrow \frac{1}{\sqrt{x}+7}\leq \frac{1}{7}$

$\Rightarrow B=\frac{-3}{\sqrt{x}+7}\geq \frac{-3}{7}$

Vậy $B_{\min}=\frac{-3}{7}$ khi $x=0$

c)

$2\sqrt{x}+1\geq 1\Rightarrow C=\frac{5}{2\sqrt{x}+1}\leq 5$

Vậy $C_{\max}=5$ khi $x=0$

d)

$3\sqrt{x}+2\geq 2\Rightarrow \frac{1}{3\sqrt{x}+2}\leq \frac{1}{2}$

$\Rightarrow D=\frac{-7}{3\sqrt{x}+2}\geq \frac{-7}{2}$

Vậy $B_{\min}=\frac{-7}{2}$ khi $x=0$

Bài 2: 

a: \(\sqrt{4-x^2}>=0\)

Dấu '=' xảy ra khi x=2 hoặc x=-2

b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)

\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)

Dấu '=' xảy ra khi x=1/2

c: \(x+\sqrt{x}+1>=1\)

=>1/(x+căn x+1)<=1

Dấu '=' xảy ra khi x=0