Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Ta có: AEMF là hình chữ nhật
nên AM=EF
mà AM=BC/2
nên EF=BC/2
Ta có AB vuông góc với AC, MF vuông góc với AC suy ra MF song song với AB, xét tam giácBca có m là trung điểm của BC, MF song song với AB suy ra ra f là trung điểm của AC mà f là trung điểm của mn suy ra m n cắt AC tại f suy ra tứ giác mcna là hình bình hành
a. ta có: AD là phân giác góc A
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
\(\Leftrightarrow\dfrac{3}{4}=\dfrac{BC-DC}{DC}\)
\(\Leftrightarrow\dfrac{3}{4}=\dfrac{5}{DC}-1\)
\(\Leftrightarrow\dfrac{7}{4}=\dfrac{5}{DC}\)
\(\Leftrightarrow7DC=20\Leftrightarrow DC=\dfrac{20}{7}\)
\(DB=BC-DC=5-\dfrac{20}{7}=\dfrac{15}{7}\)
b. ta có:\(AH.BC=AB.AC\)
\(\Leftrightarrow5AH=12\Leftrightarrow AH=\dfrac{12}{5}\)
áp dụng định lý pitago vào tam giác vuông ABH:
\(\Rightarrow BH=\sqrt{3^2-\left(\dfrac{12}{5}\right)^2}=\dfrac{9}{5}\)
HD=BD - BH = \(\dfrac{15}{7}-\dfrac{9}{5}=\dfrac{8}{5}\)
\(S_{ADH}=\dfrac{1}{2}.AH.HD=\dfrac{1}{2}.\dfrac{12}{5}.\dfrac{8}{5}=\dfrac{48}{25}cm^2\)
c. tứ giác AEDF là hình chữ nhật vì có 3 góc vuông
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEM}=90^0\)(ME⊥AB)
\(\widehat{AFM}=90^0\)(MF⊥AC)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13cm\)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{13}{2}=6.5cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)
mà AM=6,5cm
nên EF=6,5cm
Vậy: EF=6,5cm
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AC(ME//AF, C∈AF)
Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
⇒\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)
Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(MF//AE, B∈AE)
Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
⇒\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)
a: Xét ΔABC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
=>F là trung điểm của AC
Xét ΔABC có E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình
=>EF//BC và EF=BC/2
b: ΔKAC vuông tại K có KF là trung tuyến
nên KF=AC/2
Xét ΔABC có ME//AC
nên ME/AC=BE/BA=1/2
=>ME=1/2AC
=>ME=KF
Xét tứ giác MKEF có
MK//EF
ME=KF
=>MKEF là hình thang cân
a) Xét ΔABC có
F là trung điểm của AC(gt)
M là trung điểm của BC(gt)
Do đó: FM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒FM//AB và \(FM=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E∈AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)
nên FM//AE và FM=AE
Xét tứ giác AEMF có
FM//AE(cmt)
FM=AE(cmt)
Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)(ΔABC vuông tại A)
nên AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)