Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Vì OA là tia phân giác của xOC => \(xOA=AOC=\frac{1}{2}.xOC\) (1)
Vì OB là tia phân giác của COy => \(COB=BOy=\frac{1}{2}.COy\) (2)
Từ (1) và (2) => \(xOA+BOy=AOC+BOC=\frac{1}{2}.xOC+\frac{1}{2}.COy\)
=> \(xOA+BOy=AOB=\frac{1}{2}.\left(xOC+COy\right)\)
=> \(90^o=\frac{1}{2}.xOy\)
=> \(xOy=90:\frac{1}{2}\)
=> xOy = 90.2 = 180o là góc bẹt
=> Ox và Oy là 2 tia đối nhau
Chứng tỏ Ox và Oy là 2 tia đối nhau
O2 + O3 = 90 độ
Mà O1 = O2
O4 = O3
=> O1 + O4 = O2 + O3 = 90 độ
=> góc xOy = 180 độ
Hay Ox, Oy là hai tia đối nhau
\(\widehat{xOA}=\widehat{cOA}\) (gt) (1)
\(\widehat{yOB}=\widehat{COB}\) (gt) (2)
\(\widehat{COA}+\widehat{COB}=\widehat{AOB}=90^o\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{xOA}+\widehat{yOB}=90^o\)
\(\Rightarrow\widehat{xOy}=\widehat{COA}+\widehat{COB}+\widehat{xOA}+\widehat{yOB}=90^o+90^o=180^o\)
=> Ox và Oy là hai tia đối nhau
Ta có hình vẽ:
xyACBxO
Vì OA là tia phân giác của xOC => xOA=AOC=12.xOCxOA=AOC=12.xOC (1)
Vì OB là tia phân giác của COy => COB=BOy=12.COyCOB=BOy=12.COy (2)
Từ (1) và (2) => xOA+BOy=AOC+BOC=12.xOC+12.COyxOA+BOy=AOC+BOC=12.xOC+12.COy
=> xOA+BOy=AOB=12.(xOC+COy)xOA+BOy=AOB=12.(xOC+COy)
=> 90o=12.xOy90o=12.xOy
=> xOy=90:12xOy=90:12
=> xOy = 90.2 = 180o là góc bẹt
=> Ox và Oy là 2 tia đối nhau
Chứng tỏ Ox và Oy là 2 tia đối nhau
a) Vì Oa⊥Ox⇒xOa=90o;Ob⊥Oy⇒yOb=90oOa⊥Ox⇒xOa=90o;Ob⊥Oy⇒yOb=90o
Ta có: xOa + aOy = xOy
=> 90o + aOy = xOy (1)
Lại có: xOb + bOy = xOy
=> xOb + 90o = xOy (2)
Từ (1) và (2) => aOy = xOb
b) Vì Om là phân giác của aOb nên bOm=mOa=aOb2bOm=mOa=aOb2
Lại có: aOy = xOb (theo câu a)
=> aOy + mOa = bOm + xOb
=> mOy = xOm
=> Om là tia phân giác của aOb (đpcm)