Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17) \(\left(x^2-11x+30\right)\left(x^2-13x+30\right)=24x^2\)
\(\left(x-11+\frac{30}{x}\right)\left(x-13+\frac{30}{x}\right)=24\)
\(t\left(t-2\right)=24\)
\(\left(t-1\right)^2=25\)
t =6 hoặc t =-4
+\(\left(x-11+\frac{30}{x}\right)=6\Leftrightarrow x^2-11x+30=6x\Leftrightarrow x^2-17x+30=0\)
+\(\left(x-11+\frac{30}{x}\right)=-4\)
Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
a, x^4+6x^3+11x^2+6x+1
= x^4 + 6x^3 + 9x² + 2x² + 6x + 1
= x^4 + 9x² + 1 + 6x^3 + 2x² + 6x
= x^4 + 9x² + 1² + 2.x².3x + 2.x².1 + 2.3x.1
= (x² + 3x + 1)²
Mình làm được ý a nên tk 1 tk
\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)
\(=\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2\)
Đặt \(t=x^2-11x+30\)
\(\Rightarrow\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)
\(=t.\left(t-2x\right)-24x^2\)
\(=t^2-2xt-24x^2\)
\(=\left(t^2-2xt+x^2\right)-25x^2\)
\(=\left(t-x\right)-\left(5x\right)^2\)
\(=\left(t-6x\right)\left(t+4x\right)\)
\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)
Tham khảo nhé~
a, \(\dfrac{21x^2\left(y+1\right)^3}{24x^3\left(1+y\right)^2}=\dfrac{21x^2\left(y+1\right)^3}{24x^3\left(y+1\right)^2}=\dfrac{7\left(y+1\right)}{8x}\)
b, Xem lại đề
c, \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{4}{5}\)
a, 21x2(y+1)324x3(1+y)2=21x2(y+1)324x3(y+1)2=7(y+1)8x21x2(y+1)324x3(1+y)2=21x2(y+1)324x3(y+1)2=7(y+1)8x
b, Hình như bạn bị sai đề rồi
c, 5(x−y)−3(y−x)10(x−y)=5(x−y)+3(x−y)10(x−y)=8(x−y)10(x−y)=455(x−y)−3(y−x)10(x−y)=5(x−y)+3(x−y)10(x−y)=8(x−y)10(x−y)=45
❤Học tốt nhé bạn❤
✔ cho mình nhé❤
a) (24x\(^4\)y\(^3\)- 30\(x^5y^2\)- 6 \(x^6y^3\)) : 6\(x^4y^2\)
= (24\(x^4y^3\): 6\(x^4y^2\)) - (30\(x^5y^2\): 6\(x^4y^2\)) - (6\(x^6y^3\): 6\(x^4y^2\))
= 4y - 5x - x\(^2\)y
b) (x-3)(x+3)- (x-2)(x+1)
= x\(^2\)- 9 - (x\(^2\)+x-2x-2)
= x\(^2\)- 9 (x\(^2\)- x -2)
= x\(^2\)- 9 -x\(^2\)+ x+2
= -7+x
\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)=24x^2\)
<=>\(\left(x^2-13x+30\right)\left(x^2-11x+30\right)=24x^2\)
Đặt x2-11x+30=t => (t-2x).t=24x2 <=> t2-2xt=24x2 <=> t2-2xt-24x2=0 <=> 4xt-24x2+t2-6xt=0
<=>4x(t-6x)+t(t-6x)=0<=>(t-6x)(4x+t)=0<=>t-6x=0 hoặc 4x+t=0 <=>x2-17x+30=0 hoặc x2-7x+30=0
+)x2-17x+30=0 <=> x2-15x-2x+30=0 <=> x(x-15)-2(x-15)=0 <=> (x-2)(x-5)=0
<=>x-2=0 hoặc x-15=0 <=>x=2 hoặc x=15
+)x2-7x+30=0 <=> \(x^2-2.\frac{7}{2}.x+\frac{49}{4}+\frac{71}{4}=0\Leftrightarrow\left(x-\frac{7}{2}\right)^2+\frac{71}{4}=0\)
Vì \(\left(x-\frac{7}{2}\right)^2\ge0\Rightarrow\left(x-\frac{7}{2}\right)^2+\frac{71}{4}\ge\frac{71}{4}>0\) => vô nghiệm
Vậy x=2 hoặc x=15