\(\left(x-3\right)\left(x+1\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

a)\(ĐKXĐ:\hept{\begin{cases}x>3\\x\le-1\end{cases}}\)
TH1: \(x-3>0\)
 \(\left(x-3\right)\left(x+1\right)+4.\frac{x-3}{\sqrt{x-3}}\sqrt{x+1}=-3\)

\(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(t=\sqrt{\left(x-3\right)\left(x+1\right)}\left(t\ge0\right)\)
Phương trình trở thành:
\(t^2+4t+3=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}}\)(ktm)=> Vô Nghiệm
TH2: \(x-3< 0\)
\(\left(x-3\right)\left(x+1\right)-4.\frac{3-x}{\sqrt{3-x}}\sqrt{-x-1}=-3\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Tự làm tiếp nhé

 

30 tháng 9 2018

b)Nhân chéo chuyển vế rút gọn ta được:
\(x^3-2x^2+3x-2=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2\right)=0\)
\(\Rightarrow x=1\)

10 tháng 2 2019

cho S=1-3+32-33+...+398-399                                                                                                                                       

a. Chứng minh: S chia hêt cho 20

b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1

chịu

4 tháng 8 2020

Bài 1 :

\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)

\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)

\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)

Bài 2 : 

1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)

2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)

3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)

\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=\frac{1-\sqrt{3}}{5}\)

4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)

\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)

\(=\frac{7}{4}\)

30 tháng 8 2018

a)\(-\frac{2}{\sqrt{1-3x}}\text{có nghĩa }\Leftrightarrow1-3x>0\)

\(\Leftrightarrow-3x>-1\Leftrightarrow x< 1\)

b)\(\sqrt{\frac{-5}{x^2+6}}\text{có nghĩa }\Leftrightarrow\frac{-5}{x^2+6}\ge0;x^2+6\ne0\)

\(\Leftrightarrow x^2+6< 0\Leftrightarrow x^2< -6\left(\text{vô lí }\right)\)

\(x\in\varnothing\)

\(\sqrt{x+5}+\frac{1}{x+5}\text{có nghĩa }\Leftrightarrow x+5>0\)

\(\Leftrightarrow x>-5\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}\text{có nghĩa }\Leftrightarrow\left(x-1\right)\left(x-2\right)\ge0\)

TH1: \(\left(x-1\right)\ge0\text{ và }\left(x-2\right)\ge0\)

\(\Rightarrow x\ge2\)

TH2: \(\left(x-1\right)\le0\text{ và }\left(x-2\right)\le0\)

\(\Rightarrow x\le1\)

1. a) Tính:\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) b)Tính giá trị của biểu thức:M = \(\frac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2}-x+1}\) với x = \(2+\sqrt{3}\)2.CMR nếu: a) \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\) thì \(b+c\ge2a\) b) Nếu a,b >0 thì:\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)3. a) Giải pt:   1.\(\sqrt{x^2-16x+64}-2\sqrt{x^2-8x+16}+\sqrt{x^2}=0\)   2. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)b)...
Đọc tiếp

1. a) Tính:

\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)

 b)Tính giá trị của biểu thức:

\(\frac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2}-x+1}\) với \(2+\sqrt{3}\)

2.CMR nếu:

 a) \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\) thì \(b+c\ge2a\)

 b) Nếu a,b >0 thì:

\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)

3. a) Giải pt:

   1.\(\sqrt{x^2-16x+64}-2\sqrt{x^2-8x+16}+\sqrt{x^2}=0\)

   2. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

b) giải bất pt

 \(\sqrt{x^2-4x}< \sqrt{5}\)

4*.Chứng minh rằng với mọi số nguyên dương n ta luôn có:

\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)

5*. Tìm GTNN của hàm số:

\(y=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)

Có ai làm đc bài nào thì làm giúp mình nhé...  1 bài tkoy cũng được ạ. mình cảm ơn.

3
23 tháng 7 2018

Mấy bài này dài vật vã ghê =)))))))))))))

1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) 

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)

=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)

b, M \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))

\(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)

\(\sqrt{3}\left(x-1\right)\)

Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:

M\(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)

Vậy với x = \(2+\sqrt{3}\)thì M\(3+\sqrt{3}\)

2, Mình chỉ giải câu a thôi nhé:

\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)

\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)

\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)

\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)

Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)

\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)

\(\Leftrightarrow2\left(b+c\right)\ge4a\)

\(\Leftrightarrow b+c\ge2a\)

4*. Thật ra cái này mình xài làm trội, làm giảm là được mà

Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)

Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)

          \(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)

  +      .........................................................

          \(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)  

Cộng tất cả vào

\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)

\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)

\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)

\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)

\(A+1>2\sqrt{n+1}-3+1\)

\(A+1>2\sqrt{n+1}-2\)

\(A+1>2\left(\sqrt{n+1}-1\right)\)

Vậy ta có điều phải chứng minh.

23 tháng 7 2018

Cảm ơn b Trần Bảo Như nha <3

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ:...
Đọc tiếp

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ: ...

\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)

\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)

1
23 tháng 5 2019

hỏi j v