K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Sửa lại đề bài là giải PT và biện luận nhé các bạn

8 tháng 3 2018

  \(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x^2-4a^2}\) \(\left(ĐK:x\ne\pm2a\right)\)

\(\Leftrightarrow\)\(\frac{x\times\left(2a-x\right)}{\left(2a-x\right)\times\left(2a+x\right)}+\frac{\left(2a+x\right)^2}{\left(2a-x\right)\times\left(2a+x\right)}\)\(\frac{-8a^2}{\left(2a+x\right)\times\left(2a-x\right)}\)

\(\Rightarrow\) \(\left(2a-x\right)\)\(\times\)\(x+\) \(\left(2a+x\right)^2\)

\(\Leftrightarrow2ax-x^2+4a^2+4ax+x^2=-8a^2\)

\(\Leftrightarrow6ax=-12a^2\)

\(với6a\ne0\Leftrightarrow a\ne0\)

\(\Rightarrow\)PHƯƠNG TRÌNH CÓ NGIỆM DUY NHẤT LÀ \(X=-2a\)( LOẠI )

\(vớia=0\Leftrightarrow0\times x=-12\times0\)

                    \(\Leftrightarrow0x=0\)

\(\Rightarrow\)PHƯƠNG TRÌNH CÓ NGIỆM ĐÚNG VỚI MỌI X

VẬY VỚI \(a\ne0\), PHƯƠNG TRÌNH VÔ NGIỆM

         VỚI \(a=0\), PHƯƠNG TRINGF CÓ NGHIỆM ĐUNG VỚI MỌI X

8 tháng 3 2018

gian Iân coi chừng ăn gây nha

31 tháng 3 2020

\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b}{4a^2-b}+1\right)\)

\(=\left[\frac{2a+b}{\left(2a-b\right)\left(2a+b\right)}-\frac{3b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right]:\frac{4a^2+b+4a^2-b}{4a^2-b}\)

\(=\frac{2a+b-3b-4a+2b}{4a^2-b}\cdot\frac{4a^2-b}{8a^2}\)

\(=\frac{-2a}{8a^2}\)

\(a< 0\Rightarrow-2a>0\Rightarrow\frac{-2a}{8a^2}>0\left(8a^2\ge0\right)\)

=> ĐFCM

30 tháng 9 2016

\(\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(1+\frac{4a^2+b^2}{4a^2-b^2}\right)\left(ĐK:2a\ne\pm b\right)\)

\(=\left(\frac{1}{2a-b}-\frac{3b}{\left(2b-b\right)\left(2a+b\right)}-\frac{2}{2a+b}\right):\frac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)

\(=\frac{2a+b-3b-2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\cdot\frac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)

\(=\frac{2a+b-3b-4a+2b}{8a^2}=\frac{-2a}{8a^2}=-\frac{1}{4a}\)

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

9 tháng 12 2019

Ta có: \(A=\frac{2a^3b^5}{3a^3b^2}=\frac{2b^3}{3}\)

Ta có:

\(B=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)

\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

\(=\frac{\left(x+y-z\right)\left(x+y+z\right)}{\left(x-y+z\right)\left(x+y+z\right)}\)

\(=\frac{x+y-z}{x-y+z}\)

9 tháng 12 2019

A= \(\frac{2b^3}{3}\)

B= \(\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+z+y\right)\left(x+z-y\right)}=\frac{x+y-z}{x+z-y}\)