Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
GPT :\(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) - Hoc24
Cách 2:
Đặt \(\left\{{}\begin{matrix}\sqrt{25x-25}=a\\\sqrt{x+7}=b\end{matrix}\right.\) \(\Rightarrow3x-4=\dfrac{a^2-b^2}{8}\)
Pt trở thành:
\(a-b=\dfrac{a^2-b^2}{8}\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-8\right)=0\)
\(\Leftrightarrow...\)
a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)
Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no
(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))
=> x - 2 = 0
<=> x = 2 (nhận)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)
TH1:
x + 3 = 0
<=> x = - 3 (loại)
TH2:
\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)
\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)
Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no
=> x - 2 = 0
<=> x = 2 (nhận)
~ ~ ~
Vậy x = 2
tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,
Akai Haruma, @Nguyễn Việt Lâm
giúp mk vs! ngày mai phải nộp r
ĐKXĐ: ...
\(\Leftrightarrow\frac{25\left(x-1\right)-\left(x+7\right)}{5\sqrt{x-1}+\sqrt{x+7}}=3x-4\)
\(\Leftrightarrow\frac{8\left(3x-4\right)}{5\sqrt{x-1}+\sqrt{x+7}}=3x-4\)
\(\Rightarrow\left[{}\begin{matrix}3x-4=0\\5\sqrt{x-1}+\sqrt{x+7}=8\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow5\left(\sqrt{x-1}-1\right)+\sqrt{x+7}-3=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{x-1}+2}+\frac{x-2}{\sqrt{x+7}+3}=0\)
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
\(\Rightarrow\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{\left(x+1\right)\left(x+2\right)}\)
\(\Rightarrow\sqrt[3]{x+1}-1-\sqrt[3]{x+1}.\sqrt[3]{x+2}+\sqrt[3]{x+2}=0\)
\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)-\sqrt[3]{x+2}\left(\sqrt[3]{x+1}-1\right)=0\)
\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)\left(1-\sqrt[3]{x+2}\right)=0\)
Th1 : \(\sqrt[3]{x+1}-1=0\Rightarrow\sqrt[3]{x+1}=1\)
\(\Rightarrow x+1=1\Rightarrow x=0\)
Th2 : \(\sqrt[3]{x+2}-1=0\Rightarrow\sqrt[3]{x+2}=1\)
\(\Rightarrow x+2=1\Rightarrow x=-1\)
Vậy \(x\in\left\{0;-1\right\}\)
\(DK:x\ge2\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{3x-5}=x-2\)
\(\Leftrightarrow4x-6+2\sqrt{\left(x-1\right)\left(3x-5\right)}=x^2-4x+4\)
\(\Leftrightarrow2\sqrt{3x^2-8x+5}=x^2-8x+10\)
\(\Leftrightarrow4\left(3x^2-8x+5\right)=x^4+64x^2+100-16x^3-160x+20x^2\)
\(\Leftrightarrow12x^2-32x+20=x^4-16x^3+84x^2-160x+100\)
\(\Leftrightarrow x^4-16x^3+72x^2-128x+80=0\)
\(\Leftrightarrow\left(x^4-10x^3\right)-\left(6x^3-60x^2\right)+\left(12x^2-120x\right)-\left(8x-80\right)=0\)
\(\Leftrightarrow x^3\left(x-10\right)-6x^2\left(x-10\right)+12x\left(x-10\right)-8\left(x-10\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x^3-6x^2+12x-8\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x-2\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\left(n\right)\\x=2\left(n\right)\end{cases}}\)
Vay PT co 2 nghiem \(x=10,x=2\)