Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-24x+32=0\)
\(\Leftrightarrow x^4-2x^3+2x^3-4x^2+4x^2-8x-16x+32=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)+4x\left(x-2\right)-16\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2+4x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+2x^2+4x-16=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x\approx1,62\end{matrix}\right.\)
b) \(x^4-8x\sqrt{2}+12=0\)
\(\Leftrightarrow x^4-\sqrt{2}x^3+\sqrt{2}x^3-2x^2+2x^2-2\sqrt{2}x-6\sqrt{2}x+12=0\)
\(\Leftrightarrow x^3\left(x-\sqrt{2}\right)+\sqrt{2}x^2\left(x-\sqrt{2}\right)+2x\left(x-\sqrt{2}\right)-6\sqrt{2}\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^3+\sqrt{2}x^2+2x-6\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x\approx1,4142135...\end{matrix}\right.\)
1000001011101001010101101110111111111111111111110000010010010010010000100101100101001000011110100000001001000010100101010010100100000011010100000101101101010111110100100101
a/ \(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)
\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\Rightarrow x=1\pm\sqrt{5}\)
b/ \(2x^3=x^3-3x^2+3x-1\)
\(\Leftrightarrow2x^3=\left(x-1\right)^3\)
\(\Leftrightarrow x\sqrt[3]{2}=x-1\)
\(\Rightarrow x=\frac{1}{1-\sqrt[3]{2}}\)
c/ \(x^4-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow x^2+x-1=0\Rightarrow x=\frac{-1\pm\sqrt{5}}{2}\)
a) ĐKXĐ: 1 ≥ x ≥ -1
Ta có: VT ≥ 0 = VP
Dấu "=" xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}\sqrt{1-x^2}=0\\\sqrt{1+x}=0\end{matrix}\right.\)
<=> x = -1 (TM)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
Ta có: VT ≥ 0 = VP
Dấu "=" xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}\sqrt{x^2-4}=0\\\sqrt{x^2+4x+4}=0\end{matrix}\right.\)
<=> x = -2 (TM)
c) \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
ĐKXĐ: \(\left\{{}\begin{matrix}1-x^2\ge0\\x+1\ge0\end{matrix}\right.\) \(\Rightarrow\)\(\left\{{}\begin{matrix}1\ge x^2\\x\ge-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le1\\x\ge-1\end{matrix}\right.\)
=> -1 \(\le\) x \(\le\) 1
\(\sqrt{1-x^2}+\sqrt{x+1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{x+1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(1+x\right)}.\left(\sqrt{1-x}+1\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{1+x}=0\\\sqrt{1-x}=-1\left(voli\right)\end{matrix}\right.\Rightarrow x+1=0\)
=> x = -1 ( thỏa mãn)
d) ĐKXĐ: \(x^2-4\ge0\Rightarrow x^2\ge4\)
\(\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
\(\sqrt{x^2-4}+\sqrt{\left(x+2^2\right)}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2^2\right)}=0\)
\(\Leftrightarrow\)\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+2=0\\\sqrt{x-2}=-\sqrt{x+2}\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x-2=x+2\left(voli\right)\end{matrix}\right.\)
Vậy x= -2
https://olm.vn/hoi-dap/tim-kiem?q=GPT+:+x4+x3-8x2-9x=9&id=203022
\(x^4-24x-32=0\)
\(\Leftrightarrow x^4=24x+32\)
\(\Leftrightarrow x^4+4x^2+4=4x^2+24x+36\)
\(\Leftrightarrow\left(x^2+2\right)^2=4.\left(x+3\right)^2\)
\(\Leftrightarrow\left(x^2+2\right)^2-4.\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x^2+2-2x-6\right)\left(x^2+2+2x+6\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\text{ hoặc }x^2+2x+8\)
\(\cdot x^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-5=0\)
\(\Leftrightarrow\left(x-1+\sqrt{5}\right)\left(x-1-\sqrt{5}\right)=0\)
\(\Leftrightarrow x=1-\sqrt{5}\text{ hoặc }x=1+\sqrt{5}\)
\(\cdot x^2+2x+8=0\left(\text{vô nghiệm}\right)\)
Vậy x=...........