K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

a)  3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1):

3 x 2   –   7 x   –   10   =   0

Có a = 3; b = -7; c = -10

⇒ a – b + c = 0

⇒ (1) có hai nghiệm  x 1   =   - 1   v à   x 2   =   - c / a   =   10 / 3 .

+ Giải (2):

2 x 2   +   ( 1   -   √ 5 ) x   +   √ 5   -   3   =   0

Có a = 2; b = 1 - √5; c = √5 - 3

⇒ a + b + c = 0

⇒ (2) có hai nghiệm:

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 3 + 3 x 2 - 2 x - 6 = 0 ⇔ x 3 + 3 x 2 - ( 2 x + 6 ) = 0 ⇔ x 2 ( x + 3 ) - 2 ( x + 3 ) = 0 ⇔ x 2 - 2 ( x + 3 ) = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): x 2   –   2   =   0   ⇔   x 2   =   2  ⇔ x = √2 hoặc x = -√2.

+ Giải (2): x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm S = {-3; -√2; √2}

c)

x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x ⇔ x 2 − 1 ( 0 , 6 x + 1 ) = x ⋅ ( 0 , 6 x + 1 ) ⇔ x 2 − 1 ( 0 , 6 x + 1 ) − x ( 0 , 6 x + 1 ) = 0 ⇔ ( 0 , 6 x + 1 ) x 2 − 1 − x = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 0,6x + 1 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

x 2   –   x   –   1   =   0

Có a = 1; b = -1; c = -1

⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . ( - 1 )   =   5   >   0

⇒ (2) có hai nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

d)

x 2 + 2 x − 5 2 = x 2 − x + 5 2 ⇔ x 2 + 2 x − 5 2 − x 2 − x + 5 2 = 0 ⇔ x 2 + 2 x − 5 − x 2 − x + 5 ⋅ x 2 + 2 x − 5 + x 2 − x + 5 = 0 ⇔ ( 3 x − 10 ) 2 x 2 + x = 0

⇔ (3x-10).x.(2x+1)=0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 3x – 10 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

\(\Leftrightarrow\frac{3\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\)

đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)

\(\Rightarrow\frac{ab+1}{a+b}=1\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)

thay vào là được

12 tháng 7 2017

bạn có thể giải rõ hơn ko

11 tháng 12 2015

đúng là cậu đăng lên hỏi chơi rồi

4 tháng 9 2019

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.

22 tháng 1 2017

chịu =))))))))))

22 tháng 1 2017

a)

\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x+5\right)}+1=\sqrt{x+5}+\sqrt{x+2}\\ \)

\(a+b-ab=1\)\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\orbr{\begin{cases}a=1\Rightarrow\sqrt{x+2}=1\Rightarrow x=-1\\b=1\Rightarrow\sqrt{x+5}=1\Rightarrow x=-4\end{cases}}\)

b)

\(-\left(x+3\right)^2=\left(3x+10\right)-2\sqrt{3x+10}+1=\left(\sqrt{3x+10}-1\right)^2\)

Nghiệm duy nhất có thể x+3=0

với x=-3 có VP=0

=> x=-3 là nghiệm duy nhất

28 tháng 2 2021

`a,3x^2+7x+2=0`

`<=>3x^2+6x+x+2=0`

`<=>3x(x+2)+x+2=0`

`<=>(x+2)(3x+1)=0`

`<=>x=-2\or\x=-1/3`

 

d) Ta có: (x-1)(x+2)=70

\(\Leftrightarrow x^2+2x-x-2-70=0\)

\(\Leftrightarrow x^2+x-72=0\)

\(\Leftrightarrow x^2+9x-8x-72=0\)

\(\Leftrightarrow x\left(x+9\right)-8\left(x+9\right)=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=8\end{matrix}\right.\)

Vậy: S={8;-9}

14 tháng 4 2017

Đề bị lỗi không biết cái đề ghi gì trong đó nữa

14 tháng 4 2017

câu 1:

từ giả thiết\(\Rightarrow\sqrt{x+1}+\sqrt{2-y}=\sqrt{y+1}+\sqrt{2-x}\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{2-y}-\sqrt{2-x}\right)=0\)

\(\Leftrightarrow\dfrac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{2-y-2+x}{\sqrt{2-y}+\sqrt{2-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{1}{\sqrt{2-y}+\sqrt{2-x}}\right)=0\)

hiển nhiên trong ngoặc lớn khác 0 nên x=y thay vào 1 trong 2 phương trình đầu tính (nhớ ĐKXĐ đấy )

câu 2:

chịu

câu 3:

đánh giá: ta luôn có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

chứng minh: bất đẳng thức trên tương đương \(\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)(luôn đúng )

dấu = xảy ra khi \(x=y=z=\dfrac{2016}{3}=672\)

20 tháng 7 2017

a,    \(\sqrt{5+\sqrt{x-1}}\)=6-x

=>bình phương lên => trục \(\sqrt{x-1}\)với x-6 => có nhân tử chung

c,    đat \(\sqrt{x^2+7x+7}\)=a => pt 3a2+2a-5=0 => giờ thì đơn giản rồi

b, mk k bít lm