Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
c) Ta có:
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)
+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)
a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)
\(\Rightarrow a^4-2a^2=a\)
\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)
1) Đặt \(x-2=a,\)\(2x-4=b,7-3x=c\)
⇒ \(\left\{{}\begin{matrix}a+b+c=1\\a^3+b^3+c^3=1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a+b+c=1\\\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\end{matrix}\right.\)
⇒ \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
⇒ \(\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{5}{2}\end{matrix}\right.\)
2) ĐK : \(x^2-x\ge0\)
gt ⇒ \(\left(x^4-2x^3+x\right)^2=2\left(x^2-x\right)\)
⇒ \(x^8-4x^7+4x^6+2x^5-4x^4-x^2+2x=0\)
⇒ \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x^4-2x^3+x^2+1\right)=0\)
⇒ \(\left[{}\begin{matrix}x=2\\x=1\\x=0\\x=-1\end{matrix}\right.\)(t/m)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\\ \)(1)
\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0\Rightarrow!2x+1!=2x+1\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)
\(\left\{\begin{matrix}2x+1=0\\-x^2=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-\frac{1}{2}\\x=0\end{matrix}\right.\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[2\left(x+\frac{1}{2}\right)\left(x^2+1\right)\right]\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)}=\left(x+\frac{1}{2}\right)\left(x^2+1\right)\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}+1\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-1-x^2+1\right)=0\)
\(\Leftrightarrow-x^2\left(x+\frac{1}{2}\right)=0\)\(\Leftrightarrow\left[\begin{matrix}-x^2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)
\(ĐKXĐ:\hept{\begin{cases}\frac{1-2x}{x}\ge0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(1-2x\right)\ge0\\x\ne0\end{cases}\Leftrightarrow}}0< x\le\frac{1}{2}\)
Do \(x\ne0\)nên pt đã cho trở thành
\(\sqrt{\frac{1}{x}-2}=\frac{\frac{3}{x}+1}{1+\frac{1}{x^2}}\)
Đặt \(\frac{1}{x}=a\)kết hợp ĐKXĐ được \(a>2\)
Thu được pt \(\sqrt{a-2}=\frac{3a+1}{1+a^2}\)
\(\Leftrightarrow\left(1+a^2\right)\sqrt{a-2}=3a+1\)
\(\Leftrightarrow\left(1+a^2\right)\left(\sqrt{a-2}-1\right)=3a+1-a^2-1\)
\(\Leftrightarrow\left(a^2+1\right).\frac{a-3}{\sqrt{a-2}+1}=-a^2+3a\)
\(\Leftrightarrow\left(a-3\right)\left[\frac{a^2+1}{\sqrt{a-2}+1}+a\right]=0\)
Vì a > 2 nên [...] > 0
Nên a = 3
<=> x = 1/3
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow x^2-\frac{7}{4}+3x-2\sqrt{2x-3}=0\)
\(\Leftrightarrow x^2-\frac{7}{4}+\frac{9x^2-8x+12}{3x+2\sqrt{2x-3}}=0\)
\(\Leftrightarrow x^2-\frac{7}{4}+\frac{9\left(x-\frac{4}{9}\right)^2+\frac{92}{9}}{3x+2\sqrt{2x-3}}=0\)
Do \(x\ge\frac{3}{2}\Rightarrow x^2-\frac{7}{4}>0\Rightarrow VT>0\)
Pt vô nghiệm