\(x^2+12\sqrt{1-x}=x+36\)

Sử dụng trục căn ở tử ">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

nghiệm có nguyên k bn???

19 tháng 3 2019

a ) Đặt \(\sqrt{x+1}=a\Rightarrow x+1=a^2\Rightarrow x=a^2-1\)

Ta có : \(x^2+x+12\sqrt{x+1}=36\)

\(\Leftrightarrow x\left(x+1\right)+12a=36\)

\(\Leftrightarrow a^2\left(a^2-1\right)+12a-36=0\)

\(\Leftrightarrow a^4-a^2+12a-36=0\)

\(\Leftrightarrow a^3\left(a-2\right)+2a^2\left(a-2\right)+3a\left(a-2\right)+18\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a^3+2a^2+3a+18\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left[a^2\left(a+3\right)-a\left(a+3\right)+6\left(a+3\right)\right]=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\left(a^2-a+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x+1}=-3\left(VL\right)\end{matrix}\right.\)

\(\Leftrightarrow x+1=4\Leftrightarrow x=3\)

Vậy ...

b ) \(x^4-8x^2+x+12=0\)

\(\Leftrightarrow\left(x^4-8x^2+16\right)+x-4=0\)

\(\Leftrightarrow\left(x^2-4\right)^2+x-4=0\)

Đặt \(4-x^2=a\) , ta có :

\(a^2+x-4=0\) \(\Rightarrow x=4-a^2\)

Ta có : x = \(4-a^2;a=4-x^2\)

\(\Leftrightarrow x-a=x^2-a^2\)

\(\Leftrightarrow\left(x-a\right)\left(1-x-a\right)=0\)

\(\Leftrightarrow\left(x-4+x^2\right)\left(1-x-4+x^2\right)=0\)

\(\Leftrightarrow\left(x^2+x-4\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow...\)

11 tháng 10 2015

ĐK x>= -1 

Đặt \(\sqrt{x+1}=a\Rightarrow x=a^2-1\)

pt <=> \(\left(a^2-1\right)^2+a^2-1+12a=36\Leftrightarrow a^4-a^2+12a-36=0\)

<=>  \(\left(a-2\right)\left(a+3\right)\left(a^2-a+6\right)=0\)

<=> a = 2 hoặc a = -3 hoặc \(a^2-a+6=0\)

(+) a = 2 => x = \(3\)

(+) a = -3 ( loại vì \(\sqrt{x+1}\ge0\) )

(+) \(a^2-a+6=a^2-a+\frac{1}{4}+\frac{23}{4}=\left(a-\frac{1}{2}\right)^2+\frac{23}{4}>0\) => pt vô nghệm 

Vậy x = 3 là nghiệm của pt 

24 tháng 7 2016

\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-3}=\sqrt{x-1}+\sqrt{2}\)

24 tháng 7 2016

mink quên ĐK:x\(\ge1\)   ;x\(\ne3\)

24 tháng 7 2016

\(\frac{1-x^2}{1-\sqrt{x}}=\frac{\left(1-x^2\right)\left(1+\sqrt{x}\right)}{1-x}\)

24 tháng 7 2016

Bạn cho mk hỏi chút, mk ko đặt điều kiện cho x sao?