\(\sqrt{2-x}\cdot\sqrt{3-x}+\sqrt{3-x}\cdot\sqrt{5-x}+\sqrt{5-x}\cdot\sqrt{2-x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

câu b đk x>= -1/4

\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)

\(x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)

\(\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)

\(x+\dfrac{1}{4}=\left(\sqrt{2}-\dfrac{1}{2}\right)^2\)

\(x=\left(\sqrt{2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(x=\left(\sqrt{2}-\dfrac{1}{2}-\dfrac{1}{2}\right)\left(\sqrt{2}-\dfrac{1}{2}+\dfrac{1}{2}\right)\)

\(x=\sqrt{2}\left(\sqrt{2}-1\right)=2-\sqrt{2}\)

3 tháng 9 2017

bạn ghi cai gì vậy hả. Mình chẳng hiểu gì hết ý

13 tháng 6 2017

Câu 2b đề là tìm x chứ nhỉ???

b) \(\sqrt{x^2-4}+\sqrt{x-2}=0\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x^2-4}\ge0\\\sqrt{x-2}\ge0\end{matrix}\right.\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}\sqrt{x^2-4}=0\\\sqrt{x-2}=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x^2-4=0\\x-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\pm2\\x=2\end{matrix}\right.\) <=> x = 2

Vậy x = 2

13 tháng 6 2017

bài 2 câu b) đề sai rồi bạn

còn bài 1 câu b) mình cảm thấy sai sai

8 tháng 1 2018

giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)

7 tháng 6 2017

\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(\sqrt{3}+2\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{\sqrt{5}+2}+\sqrt{x}}\\ =\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+1-\sqrt{x}=1\)

a: \(=3xy\cdot\dfrac{\sqrt{2}}{\sqrt{xy}}=3\sqrt{2}\sqrt{xy}\)

b: \(=x\cdot\dfrac{\sqrt{6}}{\sqrt{x}}+\dfrac{\sqrt{6}}{3}\sqrt{x}\)

\(=\sqrt{6}\sqrt{x}+\dfrac{\sqrt{6}}{3}\sqrt{x}=\dfrac{4\sqrt{6}}{3}\cdot\sqrt{x}\)

c: \(=\sqrt{xy}+x\cdot\dfrac{\sqrt{y}}{\sqrt{x}}-y\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)

\(=\sqrt{xy}+\sqrt{xy}-\sqrt{xy}=\sqrt{xy}\)

7 tháng 6 2017

\(K=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\dfrac{1-x}{1+\sqrt{x}}=\sqrt{x}+1-\sqrt{x}=1\)

Vậy K không phụ thuộc vào x