K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PM
0
9 tháng 5 2023
x=0 ko là nghiệm
chia cả hai vê cho x<>0, ta được:
\(x-\dfrac{1}{x}+\sqrt[3]{x-\dfrac{1}{x}}=2\)
Đặt \(\sqrt[3]{x-\dfrac{1}{x}}=a\)
=>a^3+a=2
=>a=1
=>x-1/x=1
=>\(x=\dfrac{1\pm\sqrt{5}}{2}\)
NH
0
NT
1
VT
1
23 tháng 11 2015
tui giải khác không biết phải không =]]
=>4 \(\left(\sqrt{x+1}\right)^2\)- 4 \(\left(\sqrt{1-x}\right)^2\)+(3 - x) = 3\(\left(\sqrt{1-x}\right)^2\)
= >4(x+1) -4(1-x) + (3-x) = 3(1-x)
=>4x +4 -4 +4x +3 -x = 3 - 3x
=>10x = 0
=> x=0 => pt VN
VT
0
TT
0
ĐK: \(x-1\ge0;\text{ }x-2\sqrt{x-1}\ge0;\text{ }x+3-4\sqrt{x-1}\ge0\)
\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1-4\sqrt{x-1}+4}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}-2\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|=1\)
Mà: \(\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-1+2-\sqrt{x-1}\right|=1\)
Dấu "=" xảy ra khi \(\left(\sqrt{x-1}-1\right)\left(2-\sqrt{x-1}\right)\ge0\Leftrightarrow1\le\sqrt{x-1}\le2\)
\(\Leftrightarrow2\le x\le5\)
Kết luận tập nghiệm của phương trình là: \(S=\left[2;5\right]\)
Toán này lớp 8 thôi :))