Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\Rightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\Rightarrow\sqrt{x+5}\left(2-3+4\right)=6\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)
b.\(\Rightarrow5\sqrt{x-1}-\frac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\Rightarrow\sqrt{x-1}\left(5-\frac{5}{2}-1\right)=6\Rightarrow\sqrt{x-1}=4\Rightarrow x-1=16\Rightarrow x=17\)
b)\(\frac{2}{3}.\sqrt{4x^2-20}+2\sqrt{\frac{x^2-5}{9}}-3\sqrt{x^2-5}=2\)
\(< =>\frac{2}{3}.\sqrt{4\left(x^2-5\right)}+2\cdot\frac{\sqrt{x^2-5}}{3}-3\sqrt{x^2-5}=2\)
\(< =>\frac{2}{3}.2\sqrt{\left(x^2-5\right)}+2\cdot\frac{\sqrt{x^2-5}}{3}-3\sqrt{x^2-5}=2\)
\(< =>\frac{4}{3}\sqrt{\left(x^2-5\right)}+\frac{2}{3}.\sqrt{x^2-5}-3\sqrt{x^2-5}=2\)
\(< =>-\sqrt{\left(x^2-5\right)}=2\)
\(< =>\sqrt{\left(x^2-5\right)}=-2\)(vô nghiệm)
a)\(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\frac{3}{2}\sqrt{x-1}\)
\(< =>\sqrt{25\left(x-1\right)}-\frac{15}{2}.\frac{\sqrt{x-1}}{3}-\frac{3}{2}\sqrt{x-1}=6\)
\(< =>5\sqrt{x-1}-\frac{5}{2}.\sqrt{x-1}-\frac{3}{2}\sqrt{x-1}=6\)
\(< =>\sqrt{x-1}=6\)
\(< =>x-1=36\)
\(< =>x=37\)
vậy ...
\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\left(x\ge1\right)\)
\(< =>5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
\(< =>30\sqrt{x-1}-15\sqrt{x-1}=36+6\sqrt{x-1}\)
\(< =>9\sqrt{x-1}=36\\ < =>\sqrt{x-1}=4\\ < =>x-1=16\\ < =>x=17\left(tm\right)\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{1}{3}\sqrt{x-1}-\sqrt{x-1}=6\)
=>\(1.5\cdot\sqrt{x-1}=6\)
=>\(\sqrt{x-1}=4\)
=>x-1=16
=>x=17
a: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
hay x=-1
b: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}\cdot\dfrac{3}{2}=6\)
\(\Leftrightarrow\sqrt{x-1}=4\)
=>x-1=16
hay x=17
a)
ĐK x >= 0 (1)
pt <=> \(\sqrt{x+1}=\frac{1}{\sqrt{x}}-\sqrt{x}\)
ĐK \(\frac{1}{\sqrt{x}}-\sqrt{x}\ge0\) => \(\frac{1-x}{\sqrt{x}}\ge0\) => \(x\le1\) (2)
pt <=> \(x+1=\frac{1}{x}+x-2\Leftrightarrow\frac{1}{x}=3\Rightarrow x=\frac{1}{3}\) ( TM (1) và (2) )
Vậy x = 1/3 là n* của pt
b) ĐKXĐ: t lười lắm, c tự tìm nhe :D
đặt a=x+3
b=x-3
khi đó ptr trở thành:
\(\frac{a+2\sqrt{ab}}{2b+\sqrt{ab}}\)=\(\sqrt{2}\)
<=>\(\frac{\sqrt{a}.\left(\sqrt{a}+2\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+2\sqrt{b}\right)}\)=\(\sqrt{2}\)
<=>\(\frac{\sqrt{a}}{\sqrt{b}}\)=\(\sqrt{2}\)
<=>a/b=2
<=>a=2b
<=>x+3=2(x-3)
<=>x+3=2x-6
<=>x=9(chắc chắn là thỏa mãn ĐKXĐ nhưng mà sao thay vào ko đc nhỉ.phát hiện lỗi sai sửa giùm t nhe! :D)
\(\sqrt{25x-25}-\dfrac{15}{2}\cdot\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\) (1)
\(\Leftrightarrow\sqrt{25\left(x-1\right)}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{25}\sqrt{x-1}-\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)
\(\Leftrightarrow\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}=12+2\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-2\sqrt{x-1}=12\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=16+1\)
\(\Leftrightarrow x=17\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{17\right\}\)