K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019
https://i.imgur.com/9qSBKHl.jpg
29 tháng 7 2019
https://i.imgur.com/zw6cbvs.jpg
19 tháng 9 2017

hộ vs ae ơi

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Lời giải:
PT $\Leftrightarrow (2\cos x-1)(2\sin x+\cos x)=2\sin x\cos x-\sin x$

$\Leftrightarrow (2\cos x-1)(2\sin x+\cos x)=\sin x(2\cos x-1)$

$\Leftrightarrow (2\cos x-1)(\sin x+\cos x)=0$

$\Rightarrow 2\cos x=1$ hoặc $\sin x=-\cos x=\cos (\pi -x)=\sin (x-\frac{\pi}{2})$

Đến đây thì đơn giản rồi.

 

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Nkjuiopmli Sv5: Bạn chuyển vế sin x(2cos x-1) sang vế trái thì vế phải còn 0 đó.

9 tháng 8 2018

4 tháng 2 2017

Đáp án D

17 tháng 4 2018

Đáp án A

NV
27 tháng 8 2020

c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)

\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)

\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)

NV
27 tháng 8 2020

b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)

\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)

\(\Leftrightarrow cosx=sin^2x-cos^2x\)

\(\Leftrightarrow cosx=1-2cos^2x\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)

28 tháng 10 2017

6 tháng 11 2019

Đáp án A

Phương trình đã cho tương đương với