\(\cos10x=2\cos4x\sin x-\cos2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2021

\(\Leftrightarrow cos10x+cos2x-2cos4x.sinx=0\)

\(\Leftrightarrow2cos6x.cos4x-2cos4x.sinx=0\)

\(\Leftrightarrow cos4x\left(cos6x-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos6x=sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos6x=cos\left(\dfrac{\pi}{2}-x\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

21 tháng 1 2021

Em cảm ơn ạ

NV
17 tháng 9 2020

c.

ĐKXĐ: \(cosx\ne1\)

\(\Leftrightarrow cos2x-1=1-cosx\)

\(\Leftrightarrow2cos^2x-1-1=1-cosx\)

\(\Leftrightarrow2cos^2x+cosx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\left(l\right)\\cosx=-\frac{3}{2}< -1\left(l\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

d.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx\ne1\end{matrix}\right.\)

\(\Leftrightarrow cos2x=tanx-1\)

\(\Leftrightarrow cos^2x-sin^2x=\frac{sinx}{cosx}-1\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)=\frac{cosx-sinx}{-cosx}\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow tanx=1\left(l\right)\\cosx+sinx=-\frac{1}{cosx}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cos^2x+sinx.cosx=-1\)

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}sin2x=-1\)

\(\Leftrightarrow cos2x+sin2x=-3\)

Do \(\left\{{}\begin{matrix}cos2x\ge-1\\sin2x\ge-1\end{matrix}\right.\) \(\Rightarrow cos2x+sin2x\ge-2>-3\)

\(\Rightarrow\left(1\right)\) vô nghiệm

Vậy pt đã cho vô nghiệm

NV
17 tháng 9 2020

a.

\(\Leftrightarrow\pi cos2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow cos2x=\frac{1}{2}+2k\)

Do \(-1\le cos2x\le1\Rightarrow-1\le\frac{1}{2}+2k\le1\)

\(\Rightarrow k=0\)

\(\Rightarrow cos2x=\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow cos4x=1\)

\(\Leftrightarrow4x=k2\pi\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

NV
12 tháng 10 2020

7.

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(\frac{\pi}{4}-x\right).sin\left(\frac{\pi}{4}+x\right)\ne0\\cos\left(\frac{\pi}{4}-x\right)cos\left(\frac{\pi}{4}+x\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow cos2x\ne0\)

Phương trình tương đương:

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{2}-\frac{\pi}{4}-x\right)}=cos^44x\)

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{4}-x\right)}=cos^24x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^44x\)

\(\Leftrightarrow\left(sin^22x+cos^22x\right)^2-2sin^22x.cos^22x=cos^44x\)

\(\Leftrightarrow1-\frac{1}{2}sin^24x=cos^44x\)

\(\Leftrightarrow2-\left(1-cos^24x\right)=2cos^44x\)

\(\Leftrightarrow2cos^44x-cos^24x-1=0\)

\(\Leftrightarrow\left(cos^24x-1\right)\left(2cos^24x+1\right)=0\)

\(\Leftrightarrow cos^24x-1=0\)

\(\Leftrightarrow sin^24x=0\Leftrightarrow sin4x=0\)

\(\Leftrightarrow2sin2x.cos2x=0\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

NV
12 tháng 10 2020

1.

\(cos2x+5=2\left(2-cosx\right)\left(sinx-cosx\right)\)

\(\Leftrightarrow2cos^2x+4=4sinx-4cosx-2sinx.cosx+2cos^2x\)

\(\Leftrightarrow2sinx.cosx-4\left(sinx-cosx\right)+4=0\)

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)

Pt trở thành:

\(1-t^2-4t+4=0\)

\(\Leftrightarrow t^2+4t-5=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

5 tháng 9 2020

2cos^2x+2cos^2(2x)+4cos^3(2x)-3cos2x=5

NV
5 tháng 9 2020

e/

\(2cos^2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow1+cos2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow2cos^32x+cos^22x-cos2x-2=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos^22x+3cos2x+2\right)=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow x=k\pi\)