\(x^2-xy+y^2-4=0\)

2,\(5y^2+8y^2=2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

1. 

PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$

$\Leftrightarrow (2x-y)^2+3y^2=16$

$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$

$\Rightarrow y^2\leq \frac{16}{3}< 9$

$\Rightarrow -3< y< 3$

Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$

Thay vô ta tìm được:

$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$

2.

PT $\Leftrightarrow 13y^2=20412$

$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)

15 tháng 10 2017

c.

(v+1)(1-2x)=-5

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Câu 1)

Thử \(x=1,2,3,4,5\) ta thấy chỉ \(x=1\) thỏa mãn \(y=1\)

Với \(x\geq 6\)

Để ý rằng \(1!+2!+3!+...+x!=3+3!+4!+...+x!\) luôn chia hết cho $3$. Do đó \(y^3\vdots 3\rightarrow y\vdots 3\rightarrow y^3\vdots 27\)

Với \(x\geq 6\) thì \(x!\) luôn chia hết cho $27$. Do đó để \(y^3\vdots 27\) thì \(1!+2!+...+5!\) cũng phải chia hết cho $27$ hay $153$ chia hết cho $27$. Điều này vô lý.

Do đó phương trình chỉ có bộ nghiệm \((x,y)=(1,1)\) thỏa mãn.

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Bài 2)

Ta thấy \(3(x^2+y^2+xy)=x+8y\geq 0\) nên chắc chắn tồn tại ít nhất một số nguyên không âm.

TH1: \(x\geq 0\)

\(\text{PT}\Leftrightarrow 3y^2+y(3x-8)+3x^2-x=0\)

Để PT có nghiệm thì \(\Delta=(3x-8)^2-12(3x^2-x)\geq 0\)

\(\Leftrightarrow -27x^2-36x+64\geq 0\)

Giải HPT trên ta suy ra \(x\leq 1\). Do đó \(x=0\) hoặc $1$

Nếu \(x=0\Rightarrow y=0\)

Nếu \(x=1\rightarrow y=1\)

TH2: \(x<0\) thì \(y> 0\)

\(\text{PT}\Leftrightarrow 3x^2+x(3y-1)+3y^2-8y=0\)

Để PT có nghiệm thì \(\Delta =(3y-1)^2-12(3y^2-8y)\geq 0\)

\(\Leftrightarrow -27y^2+90y+1\geq 0\rightarrow y\leq 3\rightarrow y=1,2,3\)

Nếu \(y=1\rightarrow x=1\)

Nếu \(y=2,3\) không có $x$ thỏa mãn.

Vậy \((x,y)=(0,0),(1,1)\)

2 tháng 10 2016

3/ \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+2\left(\frac{16}{ab}+ab\right)+\frac{2}{ab}\ge\)

\(\ge\frac{2.4}{\left(a+b\right)^2}+4\sqrt{\frac{16}{ab}.ab}+\frac{2.4}{\left(a+b\right)^2}\ge\frac{8}{4^2}+4\sqrt{16}+\frac{8}{4^2}=17\)

Dấu "=" xảy ra khi a = b = 2

Vậy Min P = 17 <=> a = b = 2

27 tháng 11 2016

Với có ít nhất x,y = 1 thì VT > VP

Với x > 1, y > 1 thì

\(\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{y^2}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}< 1\)

Hay VT < 1

Vậy PT không có nghiệm nguyên dương