Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{3\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\)
đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)
\(\Rightarrow\frac{ab+1}{a+b}=1\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)
thay vào là được
![](https://rs.olm.vn/images/avt/0.png?1311)
tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,
Akai Haruma, @Nguyễn Việt Lâm
giúp mk vs! ngày mai phải nộp r
![](https://rs.olm.vn/images/avt/0.png?1311)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\ge2\)
Đặt \(u=\sqrt{x+3};v=\sqrt{x-2}\) Phương trình trở thành :
\(\left(u-v\right)\left(1+uv\right)=5\) Mặt khác ta thấy \(u^2-v^2=5\)
\(\Rightarrow\left(u-v\right)\left(1+uv\right)=\left(u-v\right)\left(u+v\right)\) (*)
vì \(u-v>0\) nên chia cả hai vế (*) cho \(u-v\)
Ta được: \(1+uv=u+v\) \(\Leftrightarrow uv-u-\left(v-1\right)=0\Leftrightarrow\left(v-1\right)\left(u-1\right)=0\)
\(\left[{}\begin{matrix}u=1\\v=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=1\\x-2=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(Loai\right)\\x=3\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất \(x=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x+5\right)}+1=\sqrt{x+5}+\sqrt{x+2}\\ \)
\(a+b-ab=1\)\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\orbr{\begin{cases}a=1\Rightarrow\sqrt{x+2}=1\Rightarrow x=-1\\b=1\Rightarrow\sqrt{x+5}=1\Rightarrow x=-4\end{cases}}\)
b)
\(-\left(x+3\right)^2=\left(3x+10\right)-2\sqrt{3x+10}+1=\left(\sqrt{3x+10}-1\right)^2\)
Nghiệm duy nhất có thể x+3=0
với x=-3 có VP=0
=> x=-3 là nghiệm duy nhất
Điều kiện: 5 - x > =0 và x - 3 > = 0
Đặt \(a=\sqrt{5-x};b=\sqrt{x-3}\)
=> a3 + b3 = 2\(\sqrt{2}\)
và a2 + b2 = 2
(1) <=> (a+ b)3 - 3ab(a+ b) = 2\(\sqrt{2}\) <=> 2(a + b)3 - 6ab(a+ b) = 4\(\sqrt{2}\)
(2) <=> (a + b)2 - 2ab = 2 <=> 3(a+ b)3 - 6ab(a+ b) = 6(a+ b)
Trừ từng vế của hai PT trên ta được (a + b)3 - 6(a + b) + 4\(\sqrt{2}\) = 0
<=> (a + b)3 - 2(a + b) - 4(a+ b) + 4\(\sqrt{2}\) = 0
<=> (a + b). (a + b + \(\sqrt{2}\))(a + b - \(\sqrt{2}\)) - 4.(a + b - \(\sqrt{2}\)) = 0
<=> (a + b - \(\sqrt{2}\)). [(a + b)2 + \(\sqrt{2}\)(a+ b) - 4] = 0
<=> a + b = \(\sqrt{2}\) hoặc (a + b)2 + \(\sqrt{2}\)(a+ b) - 4 = 0
+) a + b = \(\sqrt{2}\) = 0 <=> \(\sqrt{5-x}+\sqrt{x-3}=\sqrt{2}\) <=> \(5-x+x-3+2\sqrt{5-x}.\sqrt{x-3}=2\)
<=> \(\sqrt{5-x}.\sqrt{x-3}=0\) <=> x = 5 hoặc x = 0 (nhận)
+) (a + b)2 + \(\sqrt{2}\)(a+ b) - 4 = 0 => a+ b = ... giải tương tự