K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK \(x\ge\frac{-10}{3}\)

Đặt \(\sqrt{3x+1}=a\)

\(PT\Leftrightarrow\frac{3}{\sqrt{a^2+9}}=a-1\)

\(\Leftrightarrow\sqrt{a^2+9}=\frac{3}{a-1}\Leftrightarrow a^2+9=\frac{9}{\left(a-1\right)^2}\)

\(\Leftrightarrow\left(a^2+9\right)\left(a-1\right)^2=9\)                 (hình như đề sai hay thiếu phải không)????????????????

NV
14 tháng 5 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\frac{9x^2\left(1+\sqrt{1+3x}\right)^2}{\left(1-\sqrt{1+3x}\right)^2\left(1+\sqrt{1+3x}\right)^2}=3x+1\)

\(\Leftrightarrow\frac{9x^2\left(1+\sqrt{1+3x}\right)^2}{9x^2}=3x+1\)

\(\Leftrightarrow\left(1+\sqrt{1+3x}\right)^2=3x+1\)

Đặt \(\sqrt{3x+1}=t\ge0\)

\(\left(t+1\right)^2=t^2\Leftrightarrow2t+1=0\Rightarrow t=-\frac{1}{2}< 0\left(l\right)\)

Vậy pt đã cho vô nghiệm

26 tháng 11 2015

\(3\left(x^2-3x+2\right)+\sqrt{3}\left(\sqrt{x^4+x^2+1}-\sqrt{3}\right)=0\)

\(3\left(x-1\right)\left(x-2\right)+\sqrt{3}.\frac{x^4+x^2-2}{\sqrt{x^4+x^2+1}+\sqrt{3}}=0\)

\(3\left(x-1\right)\left(x-2\right)+\sqrt{3}.\frac{\left(x-1\right)\left(x^3+x^2+2x+2\right)}{\sqrt{x^4+x^2+1}+\sqrt{3}}=0\)

18 tháng 10 2018

b) ĐKXĐ:    \(x\ne1\)

Ta có:

\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)

\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3x.\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-2=0\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+\frac{3x^2}{x-1}-2=0\)

Đặt \(\frac{x^2}{x-1}=a\)

Khi đó pt đã cho trở thành:

\(a^3-3a^2+3a-2=0\)

\(\Leftrightarrow\left(a-1\right)^3=1\Rightarrow a-1=1\Leftrightarrow a=2\)

Theo cách đặt:   \(\frac{x^2}{x-1}=2\Rightarrow x^2=2x-2\Leftrightarrow x^2-2x+1=-1\Leftrightarrow\left(x-1\right)^2=-1\left(ptvn\right)\)

18 tháng 10 2018

a) ĐKXĐ:   \(x\ge8\)

Ta có:

\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)

\(\Leftrightarrow x-9-\left(\sqrt{x-8}-1\right)-3\left(\sqrt{x}-3\right)=0\)

\(\Leftrightarrow x-9-\frac{x-9}{\sqrt{x-8}+1}-3.\frac{x-9}{\sqrt{x}+3}=0\)

\(\Leftrightarrow\left(x-9\right)\left(\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1=0\end{cases}}\)

+)  \(x-9=0\Leftrightarrow x=9\left(TMĐKXĐ\right)\)

+)  \(\frac{3}{\sqrt{x}+3}=\frac{\sqrt{x-8}}{\sqrt{x-8}+1}\Rightarrow\sqrt{x\left(x-8\right)}=3\)

\(\Leftrightarrow x^2-8x-9=0\Leftrightarrow\orbr{\begin{cases}x=9TMĐKXĐ\\x=-1\left(KTMĐKXĐ\right)\end{cases}}\)

Vaayh pt có 1 nghiệm là x=9

31 tháng 5 2019

b, Ta có 

\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)

Mà \(y+1\ge2\sqrt{y}\)

=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)

Khi đó

\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)

=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)

Vậy MinP=3 khi x=y=z=1

30 tháng 1 2019

\(ĐKXĐ:\hept{\begin{cases}\frac{1-2x}{x}\ge0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(1-2x\right)\ge0\\x\ne0\end{cases}\Leftrightarrow}}0< x\le\frac{1}{2}\)

Do \(x\ne0\)nên pt đã cho trở thành

\(\sqrt{\frac{1}{x}-2}=\frac{\frac{3}{x}+1}{1+\frac{1}{x^2}}\)

Đặt \(\frac{1}{x}=a\)kết hợp ĐKXĐ được \(a>2\)

Thu được pt \(\sqrt{a-2}=\frac{3a+1}{1+a^2}\)

\(\Leftrightarrow\left(1+a^2\right)\sqrt{a-2}=3a+1\)

\(\Leftrightarrow\left(1+a^2\right)\left(\sqrt{a-2}-1\right)=3a+1-a^2-1\)

\(\Leftrightarrow\left(a^2+1\right).\frac{a-3}{\sqrt{a-2}+1}=-a^2+3a\)

\(\Leftrightarrow\left(a-3\right)\left[\frac{a^2+1}{\sqrt{a-2}+1}+a\right]=0\)

Vì a > 2 nên [...] > 0 

Nên a = 3

<=> x = 1/3