Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(9x²-24xy+16y²-40y+30x+25)+(4x²-24x+36)=0
(3x-4y+5)²+(2x-6)²=0
x=3; y=3,5
https://olm.vn/hoi-dap/tim-kiem?q=GPT+:+x4+x3-8x2-9x=9&id=203022
pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)
<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)
<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)
Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)
Có \(\sqrt{6a+1}-a=-1\)
<=> \(\sqrt{6a+1}=a-1\)
=> \(6a+1=a^2-2a+1\)
<=> \(a^2-2a-6a+1-1=0\)
<=>\(a^2-8a=0\) <=>a(a-8)=0
=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)
阮芳邵族 bạn có thể thấy trong căn luôn > hoặc = 1 => bt trong căn >0
=>luôn t/m với mọi x.
\(pt\Leftrightarrow x^3+6x^2+12x+8=-4x^3\)
<=> \(\left(x+2\right)^3=-4x^3\)
<=> \(x+2=\sqrt[3]{-4}x\)
<=> \(x\left(1-\sqrt[3]{-4}\right)=-2\)
<=> \(x=\frac{2}{\sqrt[3]{-4}-1}\)
\(6x^2+13x-5=0\)
\(\Leftrightarrow6x^2-2x+15x-5=0\)
\(\Leftrightarrow2x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-5\\3x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=\frac{1}{3}\end{cases}}}\)
Vậy tập nghiệm của phương trình là: \(S=\left\{\frac{-5}{2};\frac{1}{3}\right\}\)