![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,Thay k=0 vào pt ta có:
\(4x^2-25+0^2+4.0.x=0\\
\Leftrightarrow4x^2-25=0\\
\Leftrightarrow x^2=\dfrac{25}{4}\\
\Leftrightarrow x=\pm\dfrac{5}{2}\)
b, Thay x=-2 vào pt ta có:
\(4.\left(-2\right)^2-25+k^2+4k.\left(-2\right)=0\\ \Leftrightarrow4.4-25+k^2-8k=0\\
\Leftrightarrow k^2-8k+16-25=0\\
\Leftrightarrow k^2-8k-9=0\\
\Leftrightarrow\left(k^2+k\right)-\left(9k+9\right)=0\\
\Leftrightarrow k\left(k+1\right)-9\left(k+1\right)=0\\
\Leftrightarrow\left(k+1\right)\left(k-9\right)=0\\
\Leftrightarrow\left[{}\begin{matrix}k=-1\\k=9\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-6x^2-19x+84=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)-\left(28x-84\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)-28\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x-28\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2-3x-28=0\end{cases}}\)
Ta có : \(x^2-3x-28=0\)
\(\Leftrightarrow\left(x^2-7x\right)+\left(4x-28\right)=0\)
\(\Leftrightarrow x\left(x-7\right)+4\left(x-7\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{3;-4;7\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)
c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)
a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)
\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)
c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ b,4x^2-1=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(c,x^2-4x+3=0\\ \Leftrightarrow x^2-3x-x+3=0\\ \Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,9x^2-6x+1=0\\ \Leftrightarrow\left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow x=\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
PT\(\Leftrightarrow-5x^2+6x-1=0\)
\(\Leftrightarrow5x^2-6x+1=0\)
=>5x2-5x-x+1=0
=>(x-1)(5x-1)=0
=>x=1 hoặc x=1/5
![](https://rs.olm.vn/images/avt/0.png?1311)
ý bạn là như thế này đúng không ạ:
a/ \(x^2-6x+5=0\)
\(x^2-5x-x+5=0\)
\(x\left(x-5\right)-\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}x-5=0\rightarrow x=5\\x-1=0\rightarrow x=1\end{cases}}\)
b/\(2x^2+7x+9=0\)
?!
c/ \(4x^2-7x+3=0\)
\(4x^2-4x-3x+3=0\)
\(4x\left(x-1\right)-3\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x-3\right)=0\)
\(\orbr{\begin{cases}x-1=0\Rightarrow x=1\\4x-3=0\Rightarrow x=\frac{3}{4}\end{cases}}\)
d/ \(2\left(x+5\right)=2x+10\)
-,- mik ko rõ đề ạ, sai thì ibox ạ.Cảm ơn
![](https://rs.olm.vn/images/avt/0.png?1311)
\(6x-1=2x+3\\ \Rightarrow4x=4\\ \Rightarrow x=1\)
\(5x\left(x-2\right)+\left(2x^4+10x^3-4x^2\right):x^2\\ =5x^2-10x+2x^2\left(2x^2+5x-4\right):x^2\\ =5x^2-10x-2\left(2x^2+5x-4\right)\\ =5x^2-10x-4x^2-10x+8\\ =x^2-20x+4\)
\(\left(x+2\right)^2-2x-4=0\\ \Rightarrow\left(x+2\right)^2-2\left(x+2\right)=0\\ \Rightarrow\left(x+2\right)\left(x+2-2\right)=0\\ \Rightarrow x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
gpt là gì
lê diệu linh : gpt là giải phương trình