K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2020

ĐKXĐ: \(-\frac{16}{3}\le x\le4\)

\(\Leftrightarrow3x^2-12x+36=12\sqrt{4-x}+3\sqrt{3x+16}\)

\(\Leftrightarrow3x^2-9x+4\left(6-x-3\sqrt{4-x}\right)+\left(x+12-3\sqrt{3x+16}\right)=0\)

\(\Leftrightarrow3\left(x^2-3x\right)+\frac{4\left(x^2-3x\right)}{6-x+3\sqrt{4-x}}+\frac{x^2-3x}{x+12+3\sqrt{3x+16}}=0\)

\(\Leftrightarrow\left(x^2-3x\right)\left(3+\frac{4}{6-x+3\sqrt{4-x}}+\frac{1}{x+12+3\sqrt{3x+16}}\right)=0\)

\(\Leftrightarrow x^2-3x=0\)

14 tháng 6 2020

ĐLXĐ:\(x\ge-1\)

\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\)

\(\Leftrightarrow\left[\sqrt{x^2+4x+12}-\left(6-3x\right)\right]-\left[\sqrt{x+1}-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\frac{x^2+4x+12-36+36x-9x^2}{\sqrt{x^2+4x+12}+2-3x}-\frac{x+1-x^2+4x-4}{\sqrt{x+1}+x+2}=0\)

\(\Leftrightarrow\frac{-8x^2+40x-24}{\sqrt{x^2+4x+12}+2-3x}-\frac{-x^2+5x-3}{\sqrt{x+1}+x-2}=0\)

\(\Leftrightarrow\frac{8\left(-x^2+5x-3\right)}{\sqrt{x^2+4x+12}+2-3x}-\frac{-x^2+5x-3}{\sqrt{x+1}+x-2}=0\)

\(\Leftrightarrow\left(-x^2+5x-3\right)\left[\frac{8}{\sqrt{x^2+4x+12}+2-3x}-\frac{1}{\sqrt{x+1}+x-2}\right]=0\)

TH1:\(-x^2+5x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)

TH2:........ ( chắc vô nghiệm )

14 tháng 6 2020

phần mẫu phải là \(\sqrt{x^2+4x+12}+6-3x\) chứ :vv Hơi lỗi nhưng cảm ơn nhé !!

31 tháng 8 2016

ko biết

31 tháng 8 2016

Bài quá dễ tự làm đi 

k mình mình giải cho

11 tháng 9 2017

b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)

\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)

\(\Leftrightarrow\sqrt{x+1}.-13=0\)

\(\Leftrightarrow x=-1\)

8 tháng 11 2018

<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)

mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\)\(\sqrt{5\left(x^2-1\right)^2+4}\ge4\)\(2\left(x+1\right)^2\ge0\)với mọi x 

=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)

'=" xảy ra<=> x+1=0<=> x=-1

31 tháng 12 2020

ĐKXĐ: \(-1\le x\le1\).

Đặt \(x^2=a\left(0\le a\le1\right)\).

PT đã cho được viết lại thành:

\(13\sqrt{a-a^2}+9\sqrt{a+a^2}=16\).

Áp dụng bất đẳng thức AM - GM cho hai số thực không âm ta có:

\(a+4\left(1-a\right)\ge2\sqrt{a.4\left(1-a\right)}\)

\(\Rightarrow\sqrt{a-a^2}\le1-\dfrac{3}{4}a\)

\(\Rightarrow13\sqrt{a-a^2}\le13-\dfrac{39}{4}a\); (1)

\(a+\dfrac{4}{9}\left(a+1\right)\ge2\sqrt{a.\dfrac{4}{9}\left(a+1\right)}\)

\(\Rightarrow\sqrt{a\left(a+1\right)}\le\dfrac{13}{12}a+\dfrac{1}{3}\)

\(\Rightarrow9\sqrt{a+a^2}\le\dfrac{39a}{4}+3\). (2)

Cộng vế với vế của (1), (2) ta có \(13\sqrt{a-a^2}+9\sqrt{a+a^2}\le16\).

Mặt khác từ pt đã cho ta có đẳng thức phải xảy ra.

Do đó đẳng thức ở (1) và (2) cũng xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}a=4\left(1-a\right)\\a=\dfrac{2}{3}\left(1+a\right)\end{matrix}\right.\Leftrightarrow a=\dfrac{4}{5}\Leftrightarrow x=\pm\sqrt{\dfrac{4}{5}}\) (TMĐK).

Vậy...