Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
B . ( x + 2 ) 2 + ( y − 1 ) 2 + z 2 = 4
Giải thích các bước giải:
Mặt cầu ( S ) có tâm I ( a ; b ; c ) và bán kính R có phương trình:
( S ) : ( x − a ) 2 + ( y − b ) 2 + ( z − c ) 2 = R 2
Áp dụng:
Mặt cầu ( S ) có tâm I ( − 2 ; 1 ; 0 ) và bán kính R = 2 có phương trình:
( S ) : ( x + 2 ) 2 + ( y − 1 ) 2 + z 2 = 4
Đừng quan tâm cái \(k2\pi\) đi, lấy nghiệm là số cố định thôi. Ví dụ \(\cos x=1\) thì bạn tìm được dấu bằng xảy ra khi \(x=0\)
nghĩa là vứt luôn k2\(\pi\) ạ? chỉ ghi nghiệm là số đằng trước thôi ạ?
Lời giải:
Quay tam giác $ABC$ quanh cạnh $AB$ , ta thu được hình nón có độ dài bán kính đáy là $AC$, đường sinh là $BC$
Xét tam giác $ABC$ vuông tại $A$ có:
\(\cos \angle ACB=\frac{AC}{BC}=\cos 60=\frac{1}{2}\)
\(\Rightarrow BC=2AC=2a\)
Diện tích xung quanh của hình nón là:
\(S_{xq}=\pi rl =\pi . AC. BC=2\pi a^2\)
Diện tích đáy: \(S_{đ}=\pi r^2=\pi a^2\)
Do đó diện tích toàn phần của hình nón là:
\(S_{tp}=S_{xq}+S_{đ}=3\pi a^2\)
Đù ! sao đăng lên đây?
Với cả tao làm trưởng team cơ mà?
4.
Bán kính mặt cầu bằng khoảng cách từ A đến Ox
Trục Ox nhận \(\overrightarrow{u}=\left(1;0;0\right)\) là vtcp
Khoảng cách từ A đến Ox:
\(d\left(A;Ox\right)=\frac{\left|\left[\overrightarrow{OM};\overrightarrow{u}\right]\right|}{\left|\overrightarrow{u}\right|}=\frac{\left|\left(0;4;-3\right)\right|}{\left|\left(1;0;0\right)\right|}=\frac{\sqrt{4^2+3^2}}{1}=5\)
\(\Rightarrow R=5\)
5.
\(\overrightarrow{AB}=\left(0;2;0\right)\) ; \(\overrightarrow{BC}=\left(2;0;-2\right)\) ; \(\overrightarrow{BD}=\left(0;0;-3\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(1;1;1\right)\)
Phương trình mặt phẳng trung trực của AB: \(y-1=0\)
Gọi N là trung điểm BC \(\Rightarrow N\left(2;2;0\right)\)
Phương trình mặt phẳng trung trực của BC:
\(1\left(x-2\right)-1\left(z-0\right)=0\Leftrightarrow x-z-2=0\)
Gọi P là trung điểm BD \(\Rightarrow P\left(1;2;-\frac{1}{2}\right)\)
Phương trình mặt phẳng trung trực BD:
\(z+\frac{1}{2}=0\)
Tọa độ tâm I của mặt cầu là nghiệm: \(\left\{{}\begin{matrix}y-1=0\\x-z-2=0\\z+\frac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{5}{2};1;-\frac{1}{2}\right)\)
\(\Rightarrow\overrightarrow{AI}=\left(\frac{3}{2};1;-\frac{3}{2}\right)\Rightarrow R=IA=\frac{\sqrt{22}}{2}\)
Bạn kiểm tra lại quá trình tính toán nhé
6.
\(\overrightarrow{AB}=\left(2;2;4\right)=2\left(1;1;2\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(2;1;-1\right)\)
Phương trình mp trung trực AB:
\(1\left(x-2\right)+1\left(y-1\right)+2\left(z+1\right)=0\)
\(\Leftrightarrow x+y+2z-1=0\)
hay qáu cho một vé báo cáo nhé cảm ơn mình đi