Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
a. TXĐ: D=R
$y'=3x^2-6x=0\Leftrightarrow x=0$ hoặc $x=2$
$y''=6x-6$
$y''(0)=-6<0$ nên hàm số đạt cực đại tại $x=0$, giá trị cực đại tương ứng là $y=9$
$y''(2)=6>0$ nên hàm số đạt cực tiểu tại $x=2$, giá trị cực tiểu tương ứng là $y=5$
b. TXĐ: $D=R$
$y=\frac{1}{3}x^3-2x^2+15x+3$
$y'=x^2-4x+15=(x-2)^2+11>0$ với mọi $x\in D$
Do đó hàm $y$ đồng biến trên toàn tập xác định nên không có cực trị.