Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt đã cho luôn luôn có 2 nghiệm pb với mọi m
\(\left\{{}\begin{matrix}x_1+x_2=23\\x_1x_2=-m^2-14\end{matrix}\right.\)
\(\Rightarrow P=23-m^2-14=9-m^2\le9\)
\(P_{max}=9\) khi \(m=0\)
\(P_{min}\) không tồn tại
x2^2-x1x2+2(m-2)x1=m^2-6m+23
=>x2^2+x1(x1+x2)-x1x2=m^2-6m+23
=>(x1+x2)^2-2x1x2=m^2-6m+23
=>(2m-4)^2-2(-7)=m^2-6m+23
=>4m^2-16m+16+14-m^2+6m-23=0
=>m=7/3 hoặc m=1
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=1-(m+2)\geq 0\Leftrightarrow m\leq -1$
Áp dụng định lý Viet:
$x_1+x_2=2$
$x_1x_2=m+2$
Khi đó:
\(\text{VT}=\sqrt{[(x_1-2)^2+mx_2][(x_2-2)^2+mx_1]}=\sqrt{[(x_1-x_1-x_2)^2+mx_2][(x_2-x_1-x_2)^2+mx_1]}\)
\(=\sqrt{(x_2^2+mx_2)(x_1^2+mx_1)}=\sqrt{x_1x_2(x_2+m)(x_1+m)}\)
\(=\sqrt{x_1x_2[x_1x_2+m(x_1+x_2)+m^2]}\)
\(=\sqrt{(m+2)[m+2+2m+m^2]}=\sqrt{(m+2)(m^2+3m+2)}\)
\(=\sqrt{(m+2)^2(m+1)}\)
Lại có:
\(\text{VP}=|x_1-x_2|\sqrt{x_1x_2}=\sqrt{(x_1-x_2)^2x_1x_2}=\sqrt{[(x_1+x_2)^2-4x_1x_2]x_1x_2}\)
\(=\sqrt{-4(m+1)(m+2)}\)
YCĐB thỏa mãn khi:
$\sqrt{(m+1)(m+2)^2}=\sqrt{-4(m+1)(m+2)}$
$\Leftrightarrow (m+1)(m+2)^2=-4(m+1)(m+2)$
$\Leftrightarrow m=-1; m=-2$ hoặc $m=-6$ (đều tm)
Sửa đề: \(x_2^2-x_1^2=2\)
Ta có: \(\Delta=\left[-\left(m-3\right)\right]^2-4\cdot1\cdot\left(-2m+2\right)\)
\(=\left(m-3\right)^2-4\left(-2m+2\right)\)
\(=m^2-6m+9+8m-8\)
\(=m^2+2m+1\)
\(=\left(m+1\right)^2\ge0\forall m\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=m-3\\x_1\cdot x_2=-2m+2\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4\cdot x_1x_2\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(m-3\right)^2-4\left(-2m+2\right)\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=m^2-6m+9+8m-8=m^2-2m+1\)
\(\Leftrightarrow x_1-x_2=m-1\)
Ta có: \(x_2^2-x_1^2=2\)
\(\Leftrightarrow\left(x_2-x_1\right)\left(x_2+x_1\right)=2\)
\(\Leftrightarrow\left(1-m\right)\left(m-3\right)=2\)
\(\Leftrightarrow m-3-m^2+3m-2=0\)
\(\Leftrightarrow-m^2+4m-5=0\)
\(\Leftrightarrow m^2-4m+5=0\)(Vô lý)
Vậy: Không có giá trị nào của m để phương trình có hai nghiệm thỏa mãn \(x_2^2-x_1^2=2\)
Bạn vui lòng đối chiếu đề bạn đang có giúp mình ở hai chữ "x" mình in đậm nhé! Mình sẽ hỗ trợ nhanh nhất có thể!
Đề: Cho phương trình: xx2−(m−3)x−m=3 (1).
a) Chứng minh phương trình có hai nghiệm phân biệt.
b) Tìm m đề hai nghiệm x1, x2 của phương trình thoả mãn hệ thức: 3x(x1+x2)−x1x2≥5.
Xin cảm ơn!
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-5\end{matrix}\right.\)
Ta có : \(A=\left(x_1+x_2\right)^2-3x_1x_2\)
\(\Rightarrow4-3\left(-5\right)=4+15=19\)
Vậy A = 19
nhờ bạn đoc kĩ đề hộ