Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5mx-4m=0\)
Xét \(\Delta=25m^2+16m>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x< -\frac{16}{25}\\x>0\end{matrix}\right.\)
Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=-4m\end{matrix}\right.\)
Vì x1 và x2 là nghiệm pt nên
\(x_1^2-5mx_1-4m=0\Leftrightarrow x_1^2=5mx_1+4m\)
\(x_2^2-5mx_2-4m=0\Leftrightarrow x_2^2=5mx_2+4m\)
\(A=\frac{m^2}{5mx_1+16m+5mx_2}+\frac{5mx_2+16m+5mx_1}{m^2}\)
\(=\frac{m^2}{5m.5m+16m}+\frac{5m.5m+16m}{m^2}\)
\(=\frac{m}{25m+16}+\frac{25m+16}{m}\)
Tự giải tiếp
bạn khai triển \(x_1^2+x_2^2-x_1x_2-3=\left(x_1+x_2\right)^2-3x_1x_2-3\)
khúc -3x1x2 -3 là mình làm tắt, thực ra là hằng đẳng thức đấy, mà tại mình cộng cái -x1x2 dô luôn nên ra -3x1x2. xong rồi bạn cứ thay vào rồi làm tiếp. =)))
a) đen ta phẩy=m^2-m+2>0
vậy pt luôn................
b) biến đổi mẫu M
x1^2+x2^2-6x1x2=(x^1+x2)^2-8x1x2=(4m^2-8m+16=2(m-2)^2+8>=8
=>GTNN của M =-24/8=-3
khi m-2=0 khi m=2
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
a, bạn tìm đenta phẩy
sau đó cho đenta phẩy lớn hơn 0
b, bn tìm x1+x2=.., x1*x2=.. theo hệ thức viets
sau đó quy đơngf pt 1/x1+1/x2>1
thay x1+x2.... vào pt đó
tìm đc m nha
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét