K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: x1+x2=-2; x1x2=-4

x1+x2+2+2=-2+2+2=2

(x1+2)(x2+2)=x1x2+2(x1+x2)+4

=-4+2*(-2)+4=-4

Phương trình cần tìm là x^2-2x-4=0

b: \(\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}\)

\(=\dfrac{-2+2}{-4+\left(-2\right)+1}=0\)

\(\dfrac{1}{x_1+1}\cdot\dfrac{1}{x_2+1}=\dfrac{1}{x_1x_2+x_1+x_2+1}=\dfrac{1}{-4-2+1}=\dfrac{-1}{5}\)

Phương trình cần tìm sẽ là; x^2-1/5=0

c: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(-2\right)^2-2\cdot\left(-4\right)}{-4}=\dfrac{4+8}{-4}=-3\)

x1/x2*x2/x1=1

Phương trình cần tìm sẽ là:

x^2+3x+1=0

 

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(m+2\right)\)

\(=25-4m-8=-4m+17\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>-4m+17>0

=>-4m>-17

=>\(m< \dfrac{17}{4}\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-5\right)}{1}=5\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m+2}{1}=m+2\end{matrix}\right.\)

\(P=x_1^2\cdot x_2+x_1\cdot x_2^2-x_1^2\cdot x_2^2-4\)

\(=x_1x_2\left(x_1+x_2\right)-\left(x_1x_2\right)^2-4\)

\(=5\left(m+2\right)-\left(m+2\right)^2-4\)

\(=5m+10-m^2-4m-4-4\)

\(=-m^2+m+2\)

\(=-\left(m^2-m-2\right)\)

\(=-\left(m^2-m+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(m-\dfrac{1}{2}\right)^2+\dfrac{9}{4}< =\dfrac{9}{4}\forall m\)

Dấu '=' xảy ra khi \(m=\dfrac{1}{2}\)

NV
18 tháng 1

\(\Delta=25-4\left(m+2\right)=17-4m>0\Rightarrow m< \dfrac{17}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+2\end{matrix}\right.\)

\(P=x_1x_2\left(x_1+x_2\right)-\left(x_1x_2\right)^2-4\)

\(=5\left(m+2\right)-\left(m+2\right)^2-4\)

\(=-\left[\left(m+2\right)-\dfrac{5}{2}\right]^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

\(P_{max}=\dfrac{9}{4}\) khi \(m+2=\dfrac{5}{2}\Rightarrow m=\dfrac{1}{2}\)

2 tháng 7 2023

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{1}{1}=1\\x_1x_2=\dfrac{c}{a}=-\dfrac{3}{1}=-3\end{matrix}\right.\)

a

\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2=1^2-2.\left(-3\right)=1+6=7\)

b

\(B=x_1^2x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)=\left(-3\right).1=-3\)

c

\(C=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2}{x_1x_2}+\dfrac{x_1}{x_1x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{-3}=-\dfrac{1}{3}\)

d

\(D=\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=\dfrac{x_2^2}{x_1x_2}+\dfrac{x_1^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\dfrac{1^2-2.\left(-3\right)}{-3}=\dfrac{1+6}{-3}=\dfrac{7}{-3}=-\dfrac{3}{7}\)

NV
16 tháng 1

\(\Delta'=m^2-\left(m-1\right)=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0;\forall m\)

Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-1\end{matrix}\right.\)

\(x_1^2x_2+mx_2-x_2=4\)

\(\Leftrightarrow x_1.x_1x_2+\left(m-1\right)x_2=4\)

\(\Leftrightarrow\left(m-1\right)x_1+\left(m-1\right)x_2=4\)

\(\Leftrightarrow\left(m-1\right)\left(x_1+x_2\right)=4\)

\(\Leftrightarrow2m\left(m-1\right)=4\)

\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

10 tháng 8 2021

,có \(ac< 0\)=>pt đã cho luôn có 2 nghiệm phân biệt

vi ét \(=>\left\{{}\begin{matrix}x1+x2=2\\x1x2=-1\end{matrix}\right.\)

a,\(A=\left(x1+x2\right)^2-2x1x2=.....\) thay số tính

b,\(B=\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)=.......\)

c,\(C=x1^{2^2}+x2^{2^2}=\left(x1^2+x2^2\right)^2-2\left(x1x2\right)^2=\left[\left(x1+x2\right)^2-2x1x2\right]^2-2\left(x1x2\right)^2=....\)

\(D=x1x2\left(x1+x2\right)=.....\)

\(x1,x2\ne0=>E=\dfrac{\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)}{x1x2}=...\)

\(F=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}=....\)

\(x1,x2\ne-1=>G=\dfrac{\left(x1+x2\right)^2-2x1x2+x1x2}{x1x2+x1+X2+1}=...\)

\(x1,x2\ne0=>H=\left(\dfrac{x1x2+2}{x2}\right)\left(\dfrac{x1x2+2}{x1}\right)=\dfrac{\left(x1x2+2\right)^2}{x1x2}\)

\(=\dfrac{\left(x1x2\right)^2+4x1x2+4}{x1x2}=..\)

20 tháng 1 2023

\(x^2+3x+m-1=0\left(1\right)\)

Thay \(m=3\) vào \(\left(1\right)\)

\(\Rightarrow x^2+3x+3-1=0\)

\(\Rightarrow x^2+3x+2=0\)

\(\Rightarrow x^2+x+2x+2=0\)

\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy \(S=\left\{-2;-1\right\}\) khi \(m=3\)

20 tháng 1 2023

câu a) dễ rồi ai chả bt làm, Mik cần câu b)

 

22 tháng 1

a) ∆' = [-(m - 3)]² - (m² + 3)

= m² - 6m + 9 - m² - 3

= -6m + 6

Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0

⇔ -6m + 6 ≥ 0

⇔ 6m ≤ 6

⇔ m ≤ 1

Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm

b) Theo định lý Viét, ta có:

x₁ + x₂ = 2(m - 3) = 2m - 6

x₁x₂ = m² + 3

Ta có:

(x₁ - x₂)² - 5x₁x₂ = 4

⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4

⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4

⇔ (x₁ + x₂)² - 9x₁x₂ = 4

⇔ (2m - 6)² - 9(m² + 3) = 4

⇔ 4m² - 24m + 36 - 9m² - 27 = 4

⇔ -5m² - 24m + 9 = 4

⇔ 5m² + 24m - 5 = 0

⇔ 5m² + 25m - m - 5 = 0

⇔ (5m² + 25m) - (m + 5) = 0

⇔ 5m(m + 5) - (m + 5) = 0

⇔ (m + 5)(5m - 1) = 0

⇔ m + 5 = 0 hoặc 5m - 1 = 0

*) m + 5 = 0

⇔ m = -5 (nhận)

*) 5m - 1 = 0

⇔ m = 1/5 (nhận)

Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)

\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)

\(=4m^2-24m+36-4m^2-12=-24m+24\)

Để phương trình có hai nghiệm thì \(\Delta>=0\)

=>-24m+24>=0

=>-24m>=-24

=>m<=1

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-5x_1x_2=4\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)

=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)

=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)

=>\(4m^2-24m+36-9m^2-27-4=0\)

=>\(-5m^2-24m+5=0\)

=>\(-5m^2-25m+m+5=0\)

=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)

=>(m+5)(-5m+1)=0

=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)

NV
15 tháng 4 2022

\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

15 tháng 4 2022

Em cảm ơn ạ