\(x_1,x_2\) là hai nghiệm của phương trình \(x^2-5x-1=0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-1\end{matrix}\right.\)

Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)

\(=\dfrac{x_1+x_2}{x_1x_2}\)

\(=\dfrac{5}{-1}=-5\)

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

26 tháng 5 2021

a) Áp dụng đl Vi-ét vào pt ta có:

x1+x2=-1.5

x1 . x2= -13

C=x1(x2+1)+x2(x1+1)

 = 2x1x2 + x1+x2

= 2.(-13) -1.5

= -26 -1.5

= -27.5

26 tháng 5 2021

a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)

Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)

\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)

1 tháng 6 2020

Ta có: \(x^2-5x+3=0\)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)

a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)

b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)

c) \(C=\left|x_1-x_2\right|\)>0

=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)

=> C = căn 13

d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)

e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)

g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)

\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)

13 tháng 5 2017

Câu a: -x1,-x2 là nghiệm của ptr x2-(-x1-x2)x+x1x2=0
<=>x2-px-5=0(x1+x2=-p,x1x2=-5)

Câu b: \(\dfrac{1}{x_{1}}\),\(\dfrac{1}{x_{2}}\)là nghiệm của ptr: t2-(\(\dfrac{1}{x_{1}}\)+\(\dfrac{1}{x_{2}}\))+\(\dfrac{1}{x_{1}x_{2}}\)=0
<=>t2-\(\dfrac{p}{5}\)x-\(\dfrac{1}{5}\)=0

NV
25 tháng 12 2018

\(x^2+5x-3=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=-5\\x_1x_2=\dfrac{c}{a}=-3\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-5\right)^2-2.\left(-3\right)=31\)

29 tháng 5 2018

ko dung vi et

a/∆=9+28=37

x=(3±√37)/2

x-1=(1±√37)/2

1/(x-1)=2(1±√37)/(1-37)=(1±√37)/(-18)

A=(1+1)/(-18)=-1/9

29 tháng 5 2018

Vi-et đi bạn :v

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

10 tháng 5 2017

Ta có \(\Delta\)'= \(\left(-m\right)^2-2m+2=\left(m-1\right)^2+1>0\veebar m\)

Vậy với mọi giá trị của m thì phương trình đã cho luôn có 2 nghiệm phân biệt

Theo hệ thức Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)

Thay giá trị của \(x_1+x_2\)\(x_1.x_2\) vào biểu thức A ta được :

\(A=\dfrac{6.\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)}=\dfrac{12m}{4m^2+4m+4}\)

\(A=\dfrac{3m}{m^2+m+1}\)

Cm: \(3m\le m^2+m+1\)

\(\Leftrightarrow\left(m-1\right)^2\ge0\) (luôn đúng ) (dấu = xảy ra khi x=1)

Do đó \(3m\le m^2+m+1\) khi đó ta được:

\(A=\dfrac{3m}{m+m+1}\le1\)

Vậy với GTLN của A = 1 khi và chỉ khi m=1

10 tháng 5 2017

mình gõ nhầm dấu = xảy ra khi m=1 chứ không phải x=1