Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x_1;x_2\) là hai nghiệm của pt nên ta có những điều sau:
\(x_1+x_2=5\) ; \(x_1x_2=-1\); \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=27\)
\(x_1^2-5x_1-1=0\Rightarrow x_1^2+3x_1-2=8x_1-1\)
Tương tự: \(x_2^2+3x_2-2=8x_2-1\)
\(x_1^2+2x_1=7x_1+1\Rightarrow x_1^3+2x_1^2=7x_1^2+x_1\)
Tương tự: \(x_2^3+2x_2^2=7x_2^2+x_2\)
Thay vào:
\(M=\left(8x_1-1\right)\left(8x_2-1\right)=64\left(x_1x_2\right)-8\left(x_1+x_2\right)+1=...\)
\(N=\left(7x_1^2+x_1-1\right)\left(7x_2^2+x_2-1\right)\)
\(N=49\left(x_1x_2\right)^2+7x_1x_2\left(x_1+x_2\right)-7\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)+1\)
Bạn tự thay số
\(\Delta'=\left(m+1\right)^2-m^2-4m-3=-2m-2\ge0\Rightarrow m\le-1\)
Khi đó theo Viet pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2+4m+3\end{matrix}\right.\)
\(2\left(x_1+x_2\right)-x_1x_2+7=0\)
\(\Leftrightarrow-4m-4-m^2-4m-3+7=0\)
\(\Leftrightarrow m^2+8m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-8\end{matrix}\right.\)
a)
Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot1\cdot\left(m-3\right)\)
\(=\left(-2m-4\right)^2-4\left(m-3\right)\)
\(=4m^2+16m+16\ge0\forall x\)
Suy ra: Phương trình \(x^2-2\left(m+2\right)x+m-3=0\) luôn có nghiệm với mọi m
Áp dụng hệ thức Viet, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)=2m+4\\x_1\cdot x_2=m-3\end{matrix}\right.\)
Ta có: \(\left(2x_1+1\right)\left(2x_2+1\right)=8\)
\(\Leftrightarrow4\cdot x_1x_2+2\cdot\left(x_1+x_2\right)+1=8\)
\(\Leftrightarrow4\left(m-3\right)+2\left(2m+4\right)+1=8\)
\(\Leftrightarrow4m-12+4m+8+1=8\)
\(\Leftrightarrow8m=8+12-8-1\)
\(\Leftrightarrow8m=11\)
hay \(m=\dfrac{11}{8}\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b)
Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)
\(\Rightarrow P=4m^2+11m+31=4m^2+2\cdot m\cdot\dfrac{11}{2}+\dfrac{121}{4}+\dfrac{3}{4}\) \(=\left(2m+\dfrac{11}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow2m+\dfrac{11}{2}=0\Leftrightarrow m=-\dfrac{11}{4}\)
Vậy \(P_{Min}=\dfrac{3}{4}\) khi \(m=-\dfrac{11}{4}\)
Lời giải:
a) Để pt có 2 nghiệm phân biệt thì:
$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$
b)
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
$2x_1+2x_2+x_1x_2=5$
$\Leftrightarrow 2(x_1+x_2)+x_1x_2=5$
$\Leftrightarrow 2.2+m-3=5$
$\Leftrightarrow m=4$ (vô lý do $m< 4$)
Do đó không tồn tại $m$ thỏa mãn đề.
Lời giải:
Theo hệ thức Viete, hai nghiệm $x_1,x_2$ của phương trình sẽ thỏa mãn:
\(\left\{\begin{matrix} x_1+x_2=a\\ x_1x_2=a-1\end{matrix}\right.\)
Thay vào biểu thức:
\(M=\frac{3x_1^2+3x_2^2-3}{x_1^2x_2+x_1x_2^2}=3.\frac{x_1^2+x_2^2-1}{x_1^2x_2+x_1x_2^2}\)
\(M=3.\frac{(x_1+x_2)^2-2x_1x_2-1}{x_1x_2(x_1+x_2)}=3.\frac{a^2-2(a-1)-1}{a(a-1)}\)
\(M=3.\frac{a^2-2a+1}{a(a-1)}=3.\frac{(a-1)^2}{a(a-1)}=3.\frac{a-1}{a}=3-\frac{3}{a}\)
Đề bài không có đủ dữ kiện để cho M max hoặc M min bạn
Cold Wind
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không k "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Nội quy tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn;
3. Không "Đúng" vào các câu hỏi linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn phạm vi 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang wed
_Chúc bạn học tốt_
Bài 1 :
a) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^4-x^2-4x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy....
b) \(\dfrac{150}{x}+\dfrac{150}{x+25}=5\)ĐKXĐ : \(x\ne0;-25\)
\(\Leftrightarrow150\left(\dfrac{1}{x}+\dfrac{1}{x+25}\right)=5\)
\(\Leftrightarrow\dfrac{x+25}{x\left(x+25\right)}+\dfrac{x}{x\left(x+25\right)}=\dfrac{1}{30}\)
\(\Leftrightarrow\dfrac{2x+25}{x\left(x+25\right)}=\dfrac{1}{30}\)
\(\Leftrightarrow30\left(2x+25\right)=x\left(x+25\right)\)
\(\Leftrightarrow60x+750=x^2+25x\)
\(\Leftrightarrow x^2-35x-750=0\)
\(\Leftrightarrow x^2-50x+15x-750=0\)
\(\Leftrightarrow x\left(x-50\right)+15\left(x-50\right)=0\)
\(\Leftrightarrow\left(x-50\right)\left(x+15\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=50\\x=-15\end{matrix}\right.\)( thỏa mãn ĐKXĐ )
c) \(3x^2-x-4=0\)
\(\Leftrightarrow3x^2+3x-4x-4=0\)
\(\Leftrightarrow3x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy....
d) \(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{1}{2}\)ĐKXĐ : \(x\ne0;-10\)
\(\Leftrightarrow100\left(\dfrac{1}{x}-\dfrac{1}{x+10}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x+10}{x\left(x+10\right)}-\dfrac{x}{x\left(x+10\right)}=\dfrac{1}{200}\)
\(\Leftrightarrow\dfrac{10}{x\left(x+10\right)}=\dfrac{1}{200}\)
\(\Leftrightarrow200\cdot10=x\left(x+10\right)\)
\(\Leftrightarrow x^2+10x-2000=0\)
\(\Leftrightarrow x^2-40x+50x-2000=0\)
\(\Leftrightarrow x\left(x-40\right)+50\left(x-40\right)=0\)
\(\Leftrightarrow\left(x-40\right)\left(x+50\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=40\\x=-50\end{matrix}\right.\)( thỏa mãn ĐKXĐ )
Vậy....
p/s: mình mới học lớp 8 chỉ làm đc vậy, mong thứ lỗi :)
\(A=\dfrac{\left(x_1+x_2\right)^2+3x_1x_2}{4x_1x_2\left(x_1+x_2\right)}=\dfrac{9+3}{4\cdot1\left(-3\right)}=\dfrac{12}{-12}=-1\)
Ta có \(a=1;b=-3;c=-7\)
Nhận thấy a và c trái dấu, do đó phương trình đã cho luôn có hai nghiệm phân biệt \(x_1;x_2\)
Theo định lý Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{-3}{1}=3\\x_1x_2=\frac{c}{a}=\frac{-7}{1}=-7\end{cases}}\)
Như vậy đặt \(A=2x_1^3-3x_1^2x_2+2x_2^3-3x_1x_2\)\(=2\left(x_1^3+x_2^3\right)-3x_1x_2\left(x_1-1\right)\)
\(=2\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)-3.\left(-7\right)\left(x_1-1\right)\)(vì \(x_1x_2=-7\left(cmt\right)\))
\(=2.3\left(x_1^2+2x_1x_2+x_2^2-3x_1x_2\right)+21\left(x_1-1\right)\)(vì \(x_1+x_2=3\left(cmt\right)\))
\(=6\left[\left(x_1+x_2\right)^2-3.\left(-7\right)\right]+21x_1-21\)
\(=6\left(3^2+21\right)+21x_1-1\)\(=6.30+21x_1-1\)\(=179+21x_1\)
Xét phương trình \(x^2-3x-7=0\)có hai nghiệm phân biệt \(x_1,x_2\), do đó có hai trường hợp của \(x_1\)
\(\orbr{\begin{cases}x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-\left(-3\right)+\sqrt{\left(-3\right)^2-4.1.\left(-7\right)}}{2.1}=\frac{3+\sqrt{9+28}}{2}=\frac{3+\sqrt{37}}{2}\\x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-\left(-3\right)-\sqrt{\left(-3\right)^2-4.1.\left(-7\right)}}{2.1}=\frac{3-\sqrt{9+28}}{2}=\frac{3-\sqrt{37}}{2}\end{cases}}\)
Trường hợp \(x_1=\frac{3+\sqrt{37}}{2}\)thì \(A=179+21x_1=179+21.\frac{3+\sqrt{37}}{2}=\frac{358+63+21\sqrt{37}}{2}=\frac{421+21\sqrt{37}}{2}\)
Trường hợp \(x_1=\frac{3-\sqrt{37}}{2}\)thì
\(A=179+21x_1=179+21.\frac{3-\sqrt{37}}{2}=\frac{358+63-21\sqrt{37}}{2}=\frac{421-21\sqrt{37}}{2}\)
Vậy ...