Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng của n và các chữ số của n=2023
=>n là số có 4 chữ số nên n có dạng abcd(0<a<9;0<b,c,d<9)
Ta có:abcd+a+b+c+d=2023
=>1000xa+100xb+10xc+d+a+b+c+d=2023
=>1001xa+101xb+11xc+2xd=2023
*)Nếu a=2 b=1 =>1001xa+101xb>2023
=>a=1
=>101xb+11xc+2xd=2023-1001=1022
Nếu b=8 c=9 d=9 =>101x8+11x9+2x9<1022
=>b=9=>11xc+2xd=1022-9x101=113
Nếu c=8 d=9 =>8x11+2x9<113
=>c=9
=>2xd=113-11x9=14
=>d=7
Vậy số cần tìm là 1997
ổng của n và các chữ số của n=2023
=>n là số có 4 chữ số nên n có dạng abcd(0<a<9;0<b,c,d<9)
Ta có:abcd+a+b+c+d=2023
=>1000xa+100xb+10xc+d+a+b+c+d=2023
=>1001xa+101xb+11xc+2xd=2023
*)Nếu a=2 b=1 =>1001xa+101xb>2023
=>a=1
=>101xb+11xc+2xd=2023-1001=1022
Nếu b=8 c=9 d=9 =>101x8+11x9+2x9<1022
=>b=9=>11xc+2xd=1022-9x101=113
Nếu c=8 d=9 =>8x11+2x9<113
=>c=9
=>2xd=113-11x9=14
=>d=7
Vậy số cần tìm là 1997
Dễ thấy số cần tìm là số có bốn chữ số.
Đặt số cần tìm là \(\overline{abcd}\).
\(a=1\)hoặc \(a=2\).
Với \(a=1\):
\(\overline{1bcd}+1+b+c+d=1001+\overline{bcd}+b+c+d=2015\)
\(\Leftrightarrow\overline{bcd}+b+c+d=1014\)
\(\Leftrightarrow\overline{bcd}=1014-b-c-d\ge1014-9-9-9=987\)
Suy ra \(b=9\).
\(\overline{9cd}=1014-9-c-d\Leftrightarrow\overline{cd}=105-c-d\ge105-9-9=87\)
suy ra \(c=8\)hoặc \(c=9\).
Từ đây suy ra \(c=9,d=3\)thỏa mãn.
Ta có số: \(1993\).
Với \(a=2\):
\(\overline{2bcd}+2+b+c+d=2015\)
Dễ thấy \(b=0\).
suy ra \(\overline{cd}+2000+2+0+c+d=2015\Leftrightarrow\overline{cd}+c+d=13\)
suy ra \(c=d=1\).
Ta có số: \(2011\).
Vậy ta có hai số thỏa mãn ycbt là \(1993,2011\).
Nếu N có ít hơn 4 chữ số thì giá trị nhỏ nhất của N bằng 100; S(N) = 1 \(\Rightarrow\)N + S(N) ít nhất bằng 101>94 (loại)
Mặt khác:
N \(\le\)N + S(N) = 94 \(\Rightarrow\) N là số có 2 chữ số.
Do đó S(N) \(\le\)N\(\le\)94 \(\Rightarrow\)N = \(\overline{7a}\) hoặc \(\overline{8b}\)(nếu N = \(\overline{9c}\) thì N + S(N) \(\ge\)99<94)
Nếu N có dạng \(\overline{7a}\) ;ta có:
\(\overline{7a}\) + (7 + a) = 94
70 + 7 + a + a = 94
77 + 2a = 94
\(\Rightarrow\)2a = 17 (loại vì 17 \(⋮̸\)2)
Nếu N có dạng \(\overline{8b}\); ta có:
\(\overline{8b}\) + (8 + b) = 94
80 + 8 + b + b = 94
88 + 2b = 94
\(\Rightarrow\)2b = 6
\(\Rightarrow\)b = 3.
Vậy N = 83.