Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(S)=6!
Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12
=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)
=>Có 3*3!*3!
=>P=3/20
Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)
Mặt khác \(a+b+c=d+e+f-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)
\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)
Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)
Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)
Đáp án D
Có 6 cặp số có tổng lớn hơn 7 là (5;3); (5;4); (6;2); (6;3); (6;4); (6;5) nên ứng với 12 số có hai chữ số khác nhau mà có tổng lớn hơn 7.
Mặt khác, số các số có hai chữ số khác nhau được lập từ các chữ số 1; 2; 3; 4; 5; 6 là = 30 số.
Do đó, xác suất là:
Số phần tử của S là: \(8!\)
Gọi tổng 4 chữ số sau là S \(\Rightarrow\) tổng 4 chữ số đầu là \(S+2\)
Ta có: \(S+S+2=1+3+4+5+6+7+8+9\)
\(\Rightarrow2S=41\Rightarrow S=\dfrac{41}{2}\) (vô lý do các chữ số đều nguyên)
Vậy đề bài sai
Gọi chữ số cuối là x thì tổng 4 chữ số đầu là \(x+2\)
\(\Rightarrow\) Tổng 5 chữ số là: \(2x+2\)
Mặt khác tổng 5 chữ số nhỏ nhất từ tập đã cho là \(1+2+3+4+5=15\)
\(\Rightarrow2x+2\ge15\Rightarrow2x\ge13\)
\(\Rightarrow x=\left\{7;8;9\right\}\)
TH1: \(x=7\Rightarrow\) tổng 4 chữ số đầu là 9 mà \(1+2+3+4>9\Rightarrow\) không tồn tại 4 chữ số thỏa mãn
TH2: \(x=8\Rightarrow\) tổng 4 chữ số đầu bằng 10
Trong 9 chữ số, chỉ có duy nhất bộ \(\left\{1;2;3;4\right\}\) có tổng bằng 10
Do đó số số trong trường hợp này là: \(4!\) số
TH3: \(x=9\Rightarrow\) tổng 4 chữ số đầu bằng \(11\Rightarrow\) có 1 bộ 4 chữ số thỏa mãn là \(\left\{1;2;3;5\right\}\)
Trường hợp này cũng có \(4!\) số
Xác suất: \(P=\dfrac{4!+4!}{A_9^5}=...\)
Đáp án C
Số các số gồm 5 chữ số đôi 1 khác nhau là: 5! = 120 số
Trong mỗi hàng do các số có khả năng xuất hiện như nhau nên mỗi số xuất hiện 120:5=24 lần
⇒ S= 9333240
Đáp án C
Số phần tử của tập S là 5! = 120 số.
Mỗi số 5, 6, 7, 8, 9 có vai trò như nhau và xuất hiện ở hàng đơn vị 4! = 24 lần
Tổng các chữ số xuất hiện ở hàng đơn vị là 4!.(5 + 6 + 7 + 8 + 9) = 840
Tương tự với các chữ số hàng chục, hàng tram, hàng nghìn và hàng chục nghìn.
Vậy tổng tất cả các số thuộc tập S là 840.(104+103+102+10+1) = 9333240
Lời giải:
Ta lập được: $6!=720$ số có 6 chữ số phân biệt
Số lần xuất hiện của mỗi chữ số $1,2,3,4,5,6$ ở mỗi hàng là: $720:6=120$ (lần)
Tổng của tất cả các số tự nhiên đã lập là:
$120(1+2+3+4+5+6)(1+10+10^2+10^3+10^4+10^5)=279999720$