K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Chọn A

+) Không gian mẫu  Ω  = “Chọn ngẫu nhiên một số trong các số tự nhiên có 3 chữ số”.=> | Ω | = 9. 10 2

+) Biến cố A = “Số tự nhiên được chọn chia hết cho 9 và các chữ số đôi một khác nhau”.

Ta tìm số các số tự nhiên gồm 3 chữ số khác nhau và chia hết cho 9 (tổng các chữ số là một số chia hết cho 9). 

Bộ ba số (a;b;c) với a,b,c ∈ [0;9](a,b,c đôi một khác nhau ) và a + b + c = 9m, m ∈ ℕ *   được liệt kê dưới đây:

Vậy có tất cả 10.3! + 4.2.2! = 76 =>  | Ω A | = 76

Xác suất cần tính bằng 

21 tháng 7 2019

Chọn A

Gọi số có 9 chữ số có dạng 

Từ 10 chữ số {0;1;2;3;4;5;6;7;8;9}, ta lập được  số có 9 chữ số đôi một khác nhau.

Chọn ngẫu nhiên một số từ tập S 

Gọi A là biến cố “Số được chọn chia hết cho 3”.

Đặt T = 

Để (số có tổng các chữ số chia hết cho 3 sẽ chia hết cho 3)

Trường hợp 1: T = 45 => Số có 9 chữ số được lập từ các chữ số {1;2;3;4;5;6;7;8;9}

=> Lập được 9! số có 9 chữ số đôi một khác nhau và chia hết cho 3.

 

Trường hợp 2: T = 42 => Số có 9 chữ số được lập từ các chữ số {0;1;2;3;4;5;6;7;8;9}

+ a 1 có 8 cách chọn

+ Xếp 8 chữ số còn lại vào 8 vị trí có 

Áp dụng quy tắc nhân, ta lập được  số có 9 chữ số đôi một khác nhau và chia hết cho 3.

Trường hợp 3: T = 39 => Số có 9 chữ số được lập từ các chữ số {01;2;3;4;5;6;7;8;9}

 

Trường hợp 4:T = 36 => Số có 9 chữ số được lập từ các chữ số {0;1;2;3;4;5;6;7;8}

Trường hợp T = 39 và T = 36 tương tự như trường hợp T = 42

Vậy ta có tất cả  9! + 3.8.(8!) = 1330560 (số) thoả mãn yêu cầu bài toán

=> n(A) = 1330560

11 tháng 1 2019

Chọn A

Giả sử số cần lập là 

Số phần từ không gian mẫu: 

Gọi A là biến cố lấy được số chia hết cho 11 và tổng của các chữ số của chúng cũng chia hết cho 11.

Ta có: 

Từ 1,2,3,4,5,6,7,8,9 ta có 4 cặp tổng chia hết cho 11 là: 

NV
23 tháng 6 2021

Gọi số có 5 chữ số dạng \(\overline{abcde}\)

a có 9 cách chọn, b có 9 cách, c có 8 cách, d có 7 cách, e có 6 cách

\(\Rightarrow n\left(\Omega\right)=9.9.8.7.6=27216\)

- Nếu de cùng lẻ: chọn de từ 5 chữ số lẻ và xếp thứ tự: \(A_5^2=20\) cách

a có 7 cách chọn, b có 7, c có 6 cách \(\Rightarrow20.7.7.6=5880\) số

- Nếu de cùng chẵn:

+ de có chứa số 0: có \(1.4.2!.A_8^3=2688\) cách

+ de không chứa số 0: có \(A_4^2.7.7.6=3528\)

Tổng cộng: \(5880+2688+3528=12096\) số

Xác suất: \(P=\dfrac{12096}{27216}=\dfrac{4}{9}\)

15 tháng 3 2019

Đáp án D.

22 tháng 9 2018

Chọn D

Số phần tử của không gian mẫu là 

Gọi số cần tìm là 

* Trường hợp  a 2 = 0:  Khi đó  a 1 ,   a 3 lẻ nên có  A 5 2 cách xếp, hai chữ số lẻ còn lại có C 3 2 A 6 2 cách xếp, 4 chữ số chẵn còn lại có 4! cách xếp. Vậy theo quy tắc nhân có 

A 5 2 C 3 2 A 6 2 .4! = 43200 (số)

Vậy xác suất cần tính là: 

31 tháng 1 2017

Chọn C

Ta có 

Gọi số tự nhiên cần tìm có bốn chữ số là  a b c d ¯

Vì  a b c d ¯  chia hết cho 11 nên (a + c) - (b + d)  ⋮ 11

=> (a + c) - (b + d) = 0 hoặc (a + c) - (b + d) = 11 hoặc (a + c) - (b + d) = -11 do 

Theo đề bài ta cũng có a + b + c + d chia hết cho 11

Mà 

hoặc 

Vì  nên  (a + c) - (b + d) và a + b + c + d cùng tính chẵn, lẻ 

(do các trường hợp còn lại không thỏa mãn) => (a,c) và (b,d) là một trong các cặp số: 

- Chọn 2 cặp trong số 4 cặp trên ta có C 4 2  cách.

- Ứng với mỗi cách trên có 4 cách chọn a; 1 cách chọn c; 2 cách chọn b; 1 cách chọn  d.

Vậy xác suất cần tìm là