K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

a)

Xét ΔOMH và ΔONH có:

OH: cạnh chung

OM = ON (gt)

∠AOH = ∠BOH (Oz là tia phân giác ∠O)

=> ΔOMH = ΔONH (ĐPCM)

4 tháng 12 2017

O x y z M N H 1 2

Xét \(\Delta OMH\)\(\Delta ONH\) có:

\(OM=ON\left(gt\right)\)

\(\widehat{O_1}=\widehat{O_2}\)

\(OH\) cạnh chung

Do đó : \(\Delta OMH=\Delta ONH\)

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.a)CM: ΔAOM=ΔBOMb)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BDc) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // OtBài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường...
Đọc tiếp

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.

a)CM: ΔAOM=ΔBOM

b)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BD

c) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // Ot

Bài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M, qua B vuông góc với Oy cắt Ox tại N. GọiH là giao điểm của AM và BM,I là trung điểm của MN.CMR:

a) ON=OM và AN=BM

b)Tia OH là tia phân giác góc xOy

c) Ba tia điểm O,H,I thẳng hàng

Bài3: Cho ΔABC vuông góc tại A.Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD=MB

a) CM: AD=BC

b) CM: CD vuông góc với AC

c) Đường thẳng qua B song song với AC cắt tia DC tại N. CM:Δ ABM= ΔCNM

1

Bài 3: 

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: Ta có: ABCD là hình bình hành

nên CD//AB

mà AB⊥AC

nên CD⊥AC

c: Xét tứ giác ABNC có 

AB//NC

BN//AC

Do đó: ABNC là hình bình hành

Suy ra: AB=CN

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=NC

Do đó: ΔBAM=ΔNCM

26 tháng 11 2017

Cho góc xOy nhọn, Ot là phân giác, trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA = OB, trên Ot lấy điểm H sao cho OH > OA. a) Chứng minh tam giác OHA = tam giác OHB. b) Tia AH cắt Oy tại M, tia BH cắt Ox tại N. Chứng minh tam giác OAM = tam giác OBN. c) Chứng minh AB vuông góc OH - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

26 tháng 11 2017

Songoku Sky FC làm đúng rồi đó

Cho xoy nhọn , ot là tác phẩm .........

ai thấy đúng thì tk nhé

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
18 tháng 5 2018

a) Xét tam giác OEH và tam giác OFH

có: OE = OF (gt)

góc EOH = góc FOH (gt)

OH là cạnh chung

\(\Rightarrow\Delta OEH=\Delta OFH\left(c-g-c\right)\)

b) ta có: \(\Delta OEH=\Delta OFH\left(pa\right)\)

=> EH = FH ( 2 cạnh tương ứng)

góc OEH = góc OFH ( 2 góc tương ứng)

mà góc OEH + góc HEN = 180 độ ( kề bù)

      góc OFH + góc HFM = 180 độ ( kề bù)

=> góc OEH + góc HEN = góc OFH + góc HFM ( = 180 độ)

=> góc HEN = góc HFM ( góc OEH = góc OFH)

Xét tam giác HEN và tam giác HFM

có: góc HEN = góc HFM ( chứng minh trên)

HE = HF ( chứng minh trên)

góc EHN = góc FHM ( đối đỉnh)

\(\Rightarrow\Delta HEN=\Delta HFM\left(g-c-g\right)\)

=> EN = FM ( 2 cạnh tương ứng)

mà OE = OF (gt)

=> EN + OE = FM + OF

=> NO = MO

Xét tam giác OEM và tam giác OFN

có: OM = ON ( chứng minh trên)

\(\widehat{O}\) là góc chung

OE = OF (gt)

\(\Rightarrow\Delta OEM=\Delta OFN\left(c-g-c\right)\)

c) ta có: OE= OF

\(\Rightarrow\Delta OEF\) cân tại O ( định lí tam giác cân)

mà OH là đường phân giác \(\widehat{O}\)

=> OH là đường cao ứng với cạnh EF ( tính chất tam giác cân)

\(\Rightarrow OH\perp EF\) ( định lí)

d) ta có: NO = MO ( chứng minh phần b)

\(\Rightarrow\Delta OMN\) cân tại O ( định lí tam giác cân)

mà Ot là đường phân giác \(\widehat{O}\)

=> Ot là đường trung tuyến của MN ( tính chất tam giác cân)

mà OK là đường trung tuyến của MN ( KM = KN)

\(\Rightarrow K\in Ot\) ( định lí)

no bít kẻ hình!