Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a) Xét hình thang ABCD(AB//CD) có
M là trung điểm của AD(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
Suy ra: MN//AB//DC và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
hay \(MN=\dfrac{3+5}{2}=\dfrac{8}{2}=4\left(cm\right)\)
b) Ta có: AD//BE(gt)
AD\(\perp\)DC(gt)
Do đó: BE\(\perp\)DC(Định lí 2 từ vuông góc tới song song)
Xét tứ giác ABED có
\(\widehat{BAD}=90^0\)(gt)
\(\widehat{ADE}=90^0\)(gt)
\(\widehat{BED}=90^0\)(cmt)
Do đó: ABED là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
tam giác ACD có AO=OD(O là giao điểm hai đường chéo)
AM=MD(M là trung điểm AD) suy ra MO là đường trung bình tam giác ACD
=> MO=\(\dfrac{DC}{2}\)=\(\dfrac{16}{2}\)=8 cm
tam giác ACD vuông tại D suy ra AC2= AD2+DC2
AC2= 122+162= 144+256=400
=> AC=\(\sqrt{400}\)=20 cm
tam giác ACD vuông tại D có DO là đường trung tuyến(OB=OD)
suy ra DO= \(\dfrac{AC}{2}\)=\(\dfrac{20}{2}\)=10 cm
tui làm bài 1 thui còn bài còn lại làm biếng
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
△AOE và △BOG có:
\(AO=BO\) (O là tâm hình vuông ABCD).
\(AE=BG\)
\(\widehat{OAE}=\widehat{OBG}=45^0\)
\(\Rightarrow\)△AOE=△BOG (c-g-c).
\(\Rightarrow OE=OG;\widehat{AOE}=\widehat{BOG}\)
Mà \(\widehat{AOE}+\widehat{BOE}=90^0\) \(\Rightarrow\widehat{GOE}=\widehat{BOG}+\widehat{BOE}=90^0\)
\(\Rightarrow\)△OGE vuông cân tại O.
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )