Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Phương pháp
Sử dụng tập giá trị của hàm y = sin x : 1 ≤ sin x ≤ 1 để đánh giá hàm số bài cho
Cách giải
Ta có:
− 1 ≤ s i n x ≤ 1 ⇒ − 1 ≤ − s i n x ≤ 1
2 − 1 ≤ 2 − s i n x ≤ 2 + 1 ⇔ 1 ≤ 2 − s i n x ≤ 3 ⇒ M = 3 ; m = 1
Đáp án B.
ĐK: 0 ≤ x ≤ 1 . Với điều kiện này ta thấy rằng tử là nghịch biên (x tăng thì giá trị tử giảm đi) còn mẫu là đồng biến và mẫu dương (x tăng thì mẫu tăng theo) vì vậy tổng thể hàm y là hàm nghịch biến. Do đó M = max x ∈ 0 ; 1 y = y 0 = 1 ; m = min x ∈ 0 ; 1 y = y 1 = − 1 vậy M − m = 2.
Chọn C.
Phương pháp:
+) Tìm tập xác định D = [a;b] của hàm số đã cho.
Chọn B.
Phương pháp
- Tính y' , tìm các nghiệm của y' = 0 .
- Tính giá trị của hàm số tại các điểm đầu mút và các điểm vừa tìm được ở bước trên và so sánh kết quả.
Sử dụng công thức lượng giác để biến đổi hàm số về dạng: f t = 2 - 3 4 t 1 - 1 2 t
Đặt t = sin 2 2 x ; 0 ≤ t ≤ 1
Xét hàm số f t = 2 - 3 4 t 1 - 1 2 t = 3 t - 8 2 t - 8 ; t ∈ [0;1].
Ta có f ' t = - 8 2 t - 8 2 < 0 , ∀ t ∈ 0 ; 1 nên f(t) đồng biến trên [ 0;1 ].
Do đó M = f(0) = 1; m = f(1) = 5 6
Vậy 5 M - 6 m - 1 2017 = 5 - 5 - 1 2017 = -1
Đáp án D