Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Xét hàm số
y = x 3 − 3 x 2 − 9 x + 1 trên đoạn 0 ; 4
y ' = 3 x 2 − 6 x − 9
y ' = 0 ⇔ 3 x 2 − 6 x − 9 = 0 ⇔ x = − 1 ∉ 0 ; 4 x = 3 ∈ 0 ; 4
Tính y 0 = 1 , y 3 = − 26 , y 4 = − 19. Suy ra M = 1 , m = − 26 ⇒ m + 2 M = − 24
Đáp án B
Ta có: y ' = e − x 2 x − x 2 ⇒ y ' = 0 ⇔ x = 0 x = 2
Suy ra: y − 1 = e , y 0 = 0 , y 1 = 1 e
⇒ M = e N = 0 ⇒ M + N = e
Chọn C.
Phương pháp
- Tính y' và tìm nghiệm thuộc đoạn 1 3 ; 3 của y’.
- Tính giá trị của hàm số tại các điểm x = 1 3 ; x = 3 và các điểm vừa tìm được ở trên.
- So sánh các giá trị này và tìm GTLN, GTNN.
Cách giải:
Đáp án B.
Từ
f x . f ' x = 2 x f 2 x + 1 ⇒ f x . f ' x f 2 x + 1 = 2 x ⇒ ∫ f x . f ' x f 2 x + 1 d x = ∫ 2 x d x
(1)
Đặt
f 2 x + 1 = t ⇒ f 2 x = t 2 − 1 ⇒ 2 f x . f ' x d x = 2 t d t ⇒ f x . f ' x d x = t d t
Suy ra ∫ f x . f ' x f 2 x + 1 x = ∫ t d t t = ∫ d t = t + C 1 = f 2 x + 1 + C 1 và ∫ 2 x d x = x 2 + C 2
Từ (1) ta suy ra f 2 x + 1 + C 1 = x 2 + C 2 . Do f 0 = 0 nên C 2 − C 1 = 1 .
Như vậy
f 2 x + 1 = x 2 + C 2 − C 1 = x 2 + 1 ⇒ f 2 x = x 2 + 1 2 − 1 = x 4 + 2 x 2
⇒ f x = x 4 + 2 x 2 = x x 2 + 2 = x x 2 + 2
(do x ∈ 1 ; 3 ).
Ta có f ' x = x 2 + 2 + x 2 x 2 + 2 = 2 x 2 + 1 x 2 + 2 > 0, ∀ x ∈ ℝ ⇒ Hàm số f x = x x 2 + 2 đồng biến trên R nên f x cũng đồng biến trên 1 ; 3 .
Khi đó M = max 1 ; 3 f x = f 3 = 3 11 và m = min 1 ; 3 f x = f 1 = 3 .
Vậy
P = 2 M − m = 6 11 − 3 ⇒ a = 6 ; b = 1 ; c = 0 ⇒ a + b + c = 7
f ( x ) = 2 x 3 + 3 x 2 - 1 ⇒ f ' ( x ) = 6 x 2 + 6 x ; f ' ( x ) = 0 ⇔ [ x = 0 ( k t m ) x = - 1 ( t m )
Hàm số f(x) liên tục trên - 2 ; - 1 2 ,
có f ( - 0 ) = - 5 ; f ( - 1 ) = 0 ; f - 1 2 = - 1 2
⇒ m = m i n - 2 ; - 1 2 f ( x ) = - 5 ; M = m a x - 2 ; - 1 2 f ( x ) = 0 ⇒ P = M - m = 5
Chọn đáp án C.
Đáp án là D