Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta dễ có:
M N → = M A → + A D → + D N → M N → = M B → + B C → + C N →
Mà M và N lần lượt là trung điểm của AB và CD nên
Do đó 2 M N → = A D → + B C →
a)
Tìm được A(0;3); B(0;7)
suy ra I(0;5)
b)
Hoành độ giao điểm J của (d1) và (d2) là nghiệm của PT: x+3 = 3x+7
⇒x = -2 ⇒yJ = 1 ⇒J(-2;1)
Suy ra: OI2 = 02 + 52 = 25; OJ2 = 22 + 12 = 5; IJ2 = 22 + 42 = 20
⇒OJ2 + IJ2 = OI2 ⇒ tam giác OIJ là tam giác vuông tại J
\(\Rightarrow S_{\Delta OIJ}=\dfrac{1}{2}.OJ.IJ=\dfrac{1}{2}.\sqrt{5}.\sqrt{20}=5\left(dvdt\right)\)
ĐÂY LÀ TOÁN LP 9 MÀ
a) Vì I là trọng tâm của tam giác ABD nên \(AI=\dfrac{1}{3}AC\)
A B C D M H K N E
Gọi \(E=BN\cap AD\Rightarrow D\) là trung điểm của AE.
Dựng \(AH\perp BN\) tại H \(\Rightarrow AH=d\left(A;BN\right)=\frac{8}{\sqrt{5}}\)
Trong tam giác vuông ABE : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AE^2}=\frac{5}{4AB^2}\Rightarrow AB=\frac{\sqrt{5}.AH}{2}=4\)
\(B\in BN\Rightarrow B\left(b;8-2b\right)\left(b>2\right)\)
\(AB=4\Rightarrow B\left(3;2\right)\)
Phương trình AE : \(x+1=0\)
\(E=AE\cap BN\Rightarrow E\left(-1;10\right)\Rightarrow D\left(-1;6\right)\Rightarrow M\left(-1;4\right)\)
Gọi I là tâm của (BKM) => I là trung điểm của BM => I(1;3)
\(R=\frac{BM}{2}=\sqrt{5}\)
Vậy phương trình đường tròn : \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
Đáp án C
Ta dễ dàng chứng minh được I A → + I B → + I C → + I D → = 0 → nên k = 1.
Thật vậy ta có