K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2019

Kẻ \(HM//AB\) (\(M\in AC\)), kẻ \(HN//AC\) (\(N\in AB\))

\(\Rightarrow\widehat{HAM}=\widehat{AHN}\) (slt) , \(AH\) chung, \(\widehat{HAN}=\widehat{AHM}\) (slt)

\(\Rightarrow\Delta AHN=\Delta HAM\Rightarrow AM=HN\)

\(AH< AN+HN\) (BĐT tam giác) \(\Rightarrow AH< AN+AM\)

\(\left\{{}\begin{matrix}HM//AB\\CH\perp AB\end{matrix}\right.\) \(\Rightarrow CH\perp HM\Rightarrow\Delta CHM\) vuông tại H

\(\Rightarrow CM\) là cạnh huyền \(\Rightarrow CM>HC\)

Tương tự ta có \(BN>HB\)

\(\Rightarrow HA+HB+HC< AN+AM+BN+CM=AB+AC\) (1)

b/ Hoàn toàn tương tự như trên, ta chứng minh được:

\(HA+HB+HC< AB+BC\) (2)

\(HA+HB+HC< AC+BC\) (3)

Cộng vế với vế (1), (2), (3):

\(3\left(HA+HB+HC\right)< 2\left(AB+AC+BC\right)\)

\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+AC+BC\right)\)

14 tháng 5 2019

-Khó vãiiii

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

26 tháng 2 2018

Kẻ HD//AB,HE//ACHD//AB,HE//AC

\(\Rightarrow\)AD=HE;AE=AH

Theo BĐT trong tam giác :

AH<AE+HE=AE+ADAH<AE+HE=AE+AD
 ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
\(\Rightarrow\)HA+HB+HC<AE+AD+BE+DC=AB+AC

Chứng minh tương tự ta được:
HA+HB+HC<AB+BCHA+HB+HC<AB+BC 
HA+HB+HC<AC+BCHA+HB+HC<AC+BC
\(\Rightarrow\) 3(HA+HB+HC)<2(AB+AC+BC)

\(\Rightarrow\)HA + HB + HC < \(\frac{2}{3}\)(AB+AC+BC)(ĐPCM)



-> HA+HB+HC<23(AB+AC+BC)

20 tháng 6 2020

Kẻ HD//AB ,HE//AC
−>AD=HE; AE=AH
Theo BĐT trong tam giác :
AH<AE+HE=AE+AD
xét ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
−>HA+HB+HC<AE+AD+BE+DC=AB+AC
chứng minh tương tự:
HA+HB+HC<AB+BC
HA+HB+HC<AC+BC
K/h có :

3 (HA+HB+HC) < 2 (AB+AC+BC)
-> HA+ HB + HC< \(\frac{2}{3}\)(AB+AC+BC)

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

2 tháng 5 2016

Gọi các đường cao của tam giác nhọn ABC là BD và CE

Từ H kẻ HS//AC,HR//AB (S thuộc AB,R thuộc AC)

HA<AR+RH (Bất đẳng thức tam giác)

Hay HA<AR+AS (1)

AB//HR, AB vuông góc với CE => HR vuông góc với CE 

=> Tam giác HRC vuông tại H => RC>HC (RC là cạnh huyền) (2)

HS//AC, AC vuông góc HC => SH vuông góc HD

=> Tam giác SHE vuông tại H => BS>BH (BH là cạnh huyền) (3)

Từ (1);(2);(3) suy ra HA+HC+HB<AR+AS+RC+BS

Hay HA+HC+HB< (AR+RC)+(AS+BS)

HA+HC+HB<AC+AB

Tương tự ta cũng có: HA+HB+HC<AC+AB 

HA+HB+HC<AB+BC

HA+HB+HC<BC+AC

Cộng 2 vế ta được: 3(HA+HB+HC)<2(AC+AB+BC)

HA+HB+HC<2/3(AC+AB+BC) (ĐPCM)

4 tháng 4 2017

 Qua H kẻ HF // AB (F thuộc AC), HE // AC (E thuộc AB) 
H là trực tâm ▲ ABC => BH ┴ AC mà HE // AC => BH ┴ HE (từ ┴ đến //) 
=> ▲ BHE vuông tại H => BE > BH (t/c ▲ vuông) (1) 
Chứng minh tương tự, ta được CF > CH (2) 
HE // AF, HF // AE => AEHF là hình bình hành (theo dấu hiệu nhận biết) => AE = HF (2 cạnh đối) (3) 
Xét ▲ AHF có AF + HF > AH (bất đẳng thức tam giác) (4) 
Từ (3) và (4) => AE + AF > AH (5) 
Từ (1), (2) và (5) => BE + CF + AE + AF > AH + BH + CH => AB + AC > AH + BH + CH (6) 
Chứng minh tương tự, ta được: 
* AB + BC > AH + BH + CH (7) 
* AC + BC > AH + BH + CH (8) 
Từ (6), (7) và (8) => 2(AB + AC + BC) > 3(AH + BH + CH) => HA + HB + HC < 2/3(AB + AC + BC)

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!