Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d_2\) vuông góc \(d_1\) nên nhận (1;2) là 1 vtpt
d' là ảnh của \(d_2\) qua phép tịnh tiến \(\Rightarrow d'\) cùng phương \(d_2\Rightarrow d'\) cũng nhận (1;2) là 1 vtpt, pt d' có dạng:
\(x+2y+c=0\) (1)
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)
\(\left\{{}\begin{matrix}x'=-1+4=3\\y'=2+\left(-3\right)=-1\end{matrix}\right.\) \(\Rightarrow A'\left(3;-1\right)\)
Thế vào (1):
\(3+2.\left(-1\right)+c=0\Rightarrow c=-1\)
Vậy pt d' là: \(x+2y-1=0\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
a) d 1 : 3x + 2y + 6 = 0
b) Giao của d và Δ là A(2;0). Lấy B(0; −3) thuộc d. Ảnh của B qua phép đối xứng của đường thẳng Δ là B′(5;2). Khi đó d' chính là đường thẳng AB′: 2x − 3y – 4 = 0
Đáp án A
Vectơ pháp tuyến của đường thẳng d là v → (1; –3). Ta có u → = k v → ( k ≠ 0 do d ≠ d ' )
⇔ u → ( k ; − 3 k ) . Áp dụng biểu thức tọa độ, ta có: x ' = k + x y ' = − 3 k + y ( trong đó x’; y’ thỏa mãn phương trình đường thẳng (d’))
=> k + x – 3( –3k + y) – 10 = 0 => x − 3 y + 10 k – 10 = 0 x − 3 y = 0 => k = 1
Gọi M′(x′;y′) ∈ d′ là ảnh của M(x,y) ∈ d qua phép tịnh tiến theo vecto v → ( 2 ; 3 )
Do M(x,y) ∈ d nên
3x − 5y + 3 = 0
⇒ 3(x′−2) − 5(y′−3) + 3 = 0
⇔ 3x′ − 5y′ + 12 = 0 (d′)
Vậy M′(x′;y′) ∈ d′: 3x′ − 5y′ + 12 = 0