Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời của ConnanMTM không đúng nhé. Khẳng định B không đúng chẳng hạn với n = 4, m = 2 không xảy ra
\(B_n\cap B_m=B_{nm}\). Thật vậy, với n = 4, m = 2 thì nm = 8 và
\(B_n=B_4=\left\{0;\pm4;\pm8;...\right\}\)
\(B_m=B_2=\left\{0;\pm2;\pm4;\pm6;\pm8,...\right\}\) suy ra \(B_n\subset B_m\) và \(B_n\cap B_m=B_n=\left\{0;\pm4;\pm8;...\right\}\)
\(B_{nm}=B_8=\left\{0;\pm8;\pm16;...\right\}\). Do đó trường hơp này không xảy ra \(B_n\cap B_m=B_{nm}\). (đpcm)
Câu trả lời đúng là C.
a: \(B_2\cup B_4=B_4\)
\(B_4\cap B_6=B\left(12\right)\)
\(B_5\cap B_7=B\left(35\right)\)
b: \(B_n\subset B_m\) khi n là ước của m
\(B_n\cap B_m=B_{m\cdot n}\) khi ƯCLN(m,n)=1
Đáp án: B
Bn là tập hợp các số nguyên chia hết cho n. Bm là tập hợp các số nguyên chia hết cho m. Để Bn ⊂ Bm thì các phần tử thuộc Bn cũng thuộc Bm, tức là n chia hết cho m hay n là bội số của m.
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
b)
O B A M N
\(\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AO}=-\dfrac{1}{2}\overrightarrow{OA}\)
Vậy \(m=-\dfrac{1}{2};n=0\).
c)
\(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AB}=\dfrac{1}{2}\left(\overrightarrow{AO}+\overrightarrow{OB}\right)=-\dfrac{1}{2}\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}\).
Vậy \(m=-\dfrac{1}{2};n=\dfrac{1}{2}\).
d)
\(\overrightarrow{MB}=\dfrac{1}{2}\overrightarrow{OB}\)
Vậy \(m=0;n=\dfrac{1}{2}\).
a) Mỗi hình vuông là một hình thoi (có một góc vuông). Vậy A ⊂ B, A ≠ B.
b) Mỗi số là ước của 6 là một ước chung của 24 và 30.
n ∈ B => n ∈ A. Vậy B ⊂ A. Mặt khác mỗi ước chung của 24 và 30 là một ước của 6. Vậy A ⊂ B. Suy ra A= B.
a) Mỗi hình vuông là một hình thoi (có một góc vuông). Vậy A ⊂ B, A ≠ B.
b) Mỗi số là ước của 6 là một ước chung của 24 và 30.
n ∈ B => n ∈ A. Vậy B ⊂ A. Mặt khác mỗi ước chung của 24 và 30 là một ước của 6. Vậy A ⊂ B. Suy ra A= B.
Đáp án B