Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
Do đó; ΔABC đồng dạng với ΔHBA
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
Theo câu a) ta có: \(AH^2=AI.AB\left(1\right)\)
Xét tam giác AHK và tam giác ACH có:
góc A chung; góc AKH = góc AHC = 900
=> tam giác AHK đồng dạng với tam giác ACH (g-g)
=>\(\dfrac{AK}{AH}=\dfrac{AH}{AC}\Rightarrow AK.AC=AH^2\left(2\right)\)
Từ (1)(2) => \(AI.AB=AK.AC\Rightarrow\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Xét tam giác AIK và tam giác ABC có:
góc A chung; \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
=> Tam giác AIK đồng dạng với tam giác ACB (c-g-c)
a) Xét tam giác AIH và tam giác AHB có:
góc BAH chung; góc AIH = góc AHB (= 900)
=> tam giác AIH = tam giác AHB (g-g)
\(\Rightarrow\dfrac{AH}{AI}=\dfrac{AB}{AH}\Rightarrow AH^2=AI.AB\)
Bài 1:
C A B E H D
Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)
Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)
\(\widehat{CAB}=\widehat{ANB}=90^o\)
\(\Rightarrow\Delta ABC~\Delta AHB\)
b) \(\frac{AB}{NB}=\frac{AC}{NA}\)
\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)
Chứng minh tương tự:
\(\Delta ABC~\Delta AHB\)
\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)
Xét tam giác vuông.
Áp dụng định lý Pi-ta-go, ta có:
\(DB^2=AB^2+AD^2=6^2+8^2=100\)
\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)
Bài 2:
1 1 2 2 A B C D
a) Xét \(\Delta OAV\text{ và }\Delta OCD\)
Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)
\(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)
\(\Rightarrow\Delta OAB~\Delta OCD\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)
b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)
\(AC^2-DC^2=AD^2\left(1\right)\)
\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)
\(BD^2-AB^2=AD^2\)
\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)
1: Xét ΔABC vuông tại A có AK là đường cao
nên \(AC^2=CK\cdot CB\)(hệ thức lượng)
Hạ AH \(\perp\) BC(H\(\in\)BC)
Ta có : ID\(\perp\)BC(gt)
AH\(\perp\)BC
\(\Rightarrow\)AH//ID
Xét \(\Delta\)AHC có :
AH//ID
AI=IC(gt)
\(\Rightarrow\)HD=DC ( theo tính chất của đường trung bình trong tam giác)
Mà HC=HD+DC
\(\Rightarrow\)HC=2HD=2DC
Xét \(\Delta\)vuông ABC , áp dụng định lí py-ta-go ta có :
AB2+AC2=BC2
\(\Rightarrow\)AB2=BC2-AC2
Xét \(\Delta\)vuông ABC , áp dụng hệ thức lượng ta có :
AC2=HC.BC
Ta có : BD2-DC2=(BC-DC)2-DC2
=BC2-2BC.DC+DC2-DC2
= BC2-(2DC).BC
=BC2-HC.BC
=BC2-AC2
=AB2
Vậy BD2-DC2=AB2