\(\Delta\)nhọn ABC &...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

Do đó; ΔABC đồng dạng với ΔHBA

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

4 tháng 4 2017

Theo câu a) ta có: \(AH^2=AI.AB\left(1\right)\)

Xét tam giác AHK và tam giác ACH có:

góc A chung; góc AKH = góc AHC = 900

=> tam giác AHK đồng dạng với tam giác ACH (g-g)

=>\(\dfrac{AK}{AH}=\dfrac{AH}{AC}\Rightarrow AK.AC=AH^2\left(2\right)\)

Từ (1)(2) => \(AI.AB=AK.AC\Rightarrow\dfrac{AI}{AC}=\dfrac{AK}{AB}\)

Xét tam giác AIK và tam giác ABC có:

góc A chung; \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)

=> Tam giác AIK đồng dạng với tam giác ACB (c-g-c)

3 tháng 4 2017

a) Xét tam giác AIH và tam giác AHB có:

góc BAH chung; góc AIH = góc AHB (= 900)

=> tam giác AIH = tam giác AHB (g-g)

\(\Rightarrow\dfrac{AH}{AI}=\dfrac{AB}{AH}\Rightarrow AH^2=AI.AB\)

9 tháng 5 2018

Bài 1:

C A B E H D

Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)

Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)

      \(\widehat{CAB}=\widehat{ANB}=90^o\)

\(\Rightarrow\Delta ABC~\Delta AHB\)

b) \(\frac{AB}{NB}=\frac{AC}{NA}\)

\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)

Chứng minh tương tự: 

\(\Delta ABC~\Delta AHB\)

\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)

Xét tam giác vuông.

Áp dụng định lý Pi-ta-go, ta có: 

\(DB^2=AB^2+AD^2=6^2+8^2=100\)

\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)

Bài 2: 

1 1 2 2 A B C D

a) Xét \(\Delta OAV\text{ và }\Delta OCD\)

Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)

     \(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)

\(\Rightarrow\Delta OAB~\Delta OCD\)

\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)

b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)

\(AC^2-DC^2=AD^2\left(1\right)\)

\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)

\(BD^2-AB^2=AD^2\)

\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)

9 tháng 5 2018

cảm ơn bạn nhé

1: Xét ΔABC vuông tại A có AK là đường cao

nên \(AC^2=CK\cdot CB\)(hệ thức lượng)

12 tháng 10 2020

Hạ AH \(\perp\) BC(H\(\in\)BC)

Ta có : ID\(\perp\)BC(gt)

AH\(\perp\)BC

\(\Rightarrow\)AH//ID

Xét \(\Delta\)AHC có :

AH//ID

AI=IC(gt)

\(\Rightarrow\)HD=DC ( theo tính chất của đường trung bình trong tam giác)

Mà HC=HD+DC

\(\Rightarrow\)HC=2HD=2DC

Xét \(\Delta\)vuông ABC , áp dụng định lí py-ta-go ta có :

AB2+AC2=BC2

\(\Rightarrow\)AB2=BC2-AC2

Xét \(\Delta\)vuông ABC , áp dụng hệ thức lượng ta có :

AC2=HC.BC

Ta có : BD2-DC2=(BC-DC)2-DC2

=BC2-2BC.DC+DC2-DC2

= BC2-(2DC).BC

=BC2-HC.BC

=BC2-AC2

=AB2

Vậy BD2-DC2=AB2

12 tháng 10 2020

ABHDCI